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Abstract 
 
 Meeting the demand for aviation security following September 11 accomplishes the dual goals of 
fighting terrorism and strengthening the economy by restoring air traveler confidence.  In order to satisfy 
these demands in a cost-effective manner, we derived a model that determines the minimum number of EDS 
machines needed to process the peak travel hour’s quantity of bags at an airport, thereby being sufficient for 
the rest of the day.  To ensure the optimal usage of these machines, we devised a flight scheduling algorithm 
that allows us to regulate the flow of bags, allowing the machines to operate at full capacity as long as 
possible.  We also determined the importance of the mandatory time at which all airlines require passengers 
to arrive early.  Through analyzing the cost functions of EDS and ETD machines, we showed that, in the 
long run, EDS machines are cheaper due to their lower operating cost.  New and improved technology 
should be pursued, but unless a new machine has a significantly lower operating cost than the EDS, it will 
probably continue to be cheaper to use EDS until the lifespan of the EDS machine expires.   
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Introduction 
 
 A May 2002 Transportation Security Administration (TSA) press release outlines the pilot testing of 
different baggage screening programs at three airports.  One airport used all Explosive Trace Detection 
(ETD) machines, one used all Explosive Detection System (EDS) machines, and a third airport used half and 
half.  With some mathematical ingenuity, we intend to show that these pilot tests were unnecessary.   
 Our model, in its purest form, is rather simple, dependent mainly upon statistical data and 
probabilities to fill in the elements of the rate equation.  We will focus on maximization of both the 
productivity of the machines and the amount of time they have to process the highest peak in checked bags, 
thus being sufficient for other times.  We will show the importance of proper flight schedule planning and the 
ideal method for scheduling.   
 The implementation of the model’s conclusions will save the government and airports money in 
purchasing and installing expensive machinery.  Security will be paramount; minimizing passenger 
inconvenience will be the secondary concern, but under our model, we eliminate or, at least, minimize 
expected delays.  By extending our model, we can also potentially find the optimal amount of time before 
takeoff at which passengers should be required to arrive at the airport.  To minimize cost, this time may need 
to be increased or decreased, depending on experimental data.  Ideally, the model ensures security, creates 
economic growth, relieves stress, and prevents headaches and nausea, with few or no side effects.   
 Far better than snake oil, let us now outline our assumptions and then describe the model.   
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General Assumptions 
The following have been assumed unless temporarily revoked elsewhere in the paper. 
 
 
We assume all data as given on the Technical Information Sheet (TIS)  
 
We assume that, if all of our assumptions hold, it is unsatisfactory to expect flight delays due to the explosive 
detection machines.   
 
However, we assume that a 15-minute delay is considered on time, according to FAA policy.1  If, on a normal 
day, empirical data differing from our assumptions causes a delay of less than 15 minutes, we assume that 
such delays will likely go unnoticed.   
 
We assume that the percentage of planes that are cancelled before baggage is checked is negligible. 
 
We assume no extreme unforeseen circumstances, e.g. striking workers, that might affect baggage screening 
and flight departures.   
 
We assume there will be no major disturbances in the Force during the peak hour. 
 
We assume that the number of passengers who will check more than two bags is negligible. 
 
We also assume that by the time our plan is fully implemented, all airports will have EDS or other scanning 
machines functional; thus, we will not need to rescan the bags belonging to connecting passengers originating 
elsewhere.   
 
The model requires that a system of bag queuing and prioritizing process will be in place.  For example, if one 
person arrives 2 hours ahead of their scheduled flight, and another person arrives at the same time, but their 
flight is in 45 minutes, then the latter person’s checked bags will be processed by an EDS before the former’s.  
We assume this system to exist and, furthermore, that it is more cost-effective to pay someone to prioritize 
the bags than to buy unnecessary EDS machines to compensate for chaos’s inefficiencies.  How to 
implement such a system exceeds the scope of this paper.   
 
We assume that prioritizing negates the benefits of passengers arriving earlier than mandatory time. 
 
We assume that the answer to life, universe, and everything is 42.2 
 
For our initial EDS model, we assume no significant delay in having to re-scan or hand-examine bags due to 
false positives; thus, we ignore it in our calculations.   
 
We assume that the throughput rate of bags per hour per EDS machine can be increased, subject to the TIS-
specified limit of 210 bags per hour per EDS machine, by educating the operators of the machines. 
 
We ignore the cost of repurchasing EDS or ETD machines due to defects and breakdowns.  We also assume 
that performing scheduled maintenance on these machines will reduce the chance of machine failure.  
Therefore, we include the cost of maintenance in annual operational costs. 
 
We ignore potential lines at the airline check-in desk. 

                                                      
1 Mead, Kenneth M.,  “Challenges Facing TSA”  
2 For a proof, see Hitchhiker’s Guide to the Galaxy, by Douglas Adams 
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1. Task 1 
1.1 The Model 
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EDSQ  = quantity of EDSs needed 
l       = throughput rate of each machine, in terms of bags/hour/machine 
τ   = minimum early passenger arrival time, in hours, i.e. how long before departure the airline closes 

bag check-in 
µ  = travel time of one bag between EDS and the plane, in hours 

it  = number of seats on flight of type i ( t  = 34,  = 46, etc.) 1 2t

in  = number of flights of type i during the peak hour 

idseatsfilleP  = estimated percentage of seats filled in flights of type i 
φ  = summation shift constant, defined below 
Ω  = percent of time that the EDS is operational (given as 92%) 
 
1.1.1 Deriving the model 
 
 We could stop here, as we believe that we have shown , q.e.d.  However, so as to humor the 

reader, we shall elaborate.  To begin, we establish that we are dealing with a model of rates, such that , 
the number of bags in the peak hour, equals the rate of bags processed multiplied by the amount of time T.  
The rate of bags per hour depends on , the number of bags that one machine can process in one hour, 
times , the number of EDSs.  Combining these relations, we create a model that incorporates the 

necessary variables, solved for  (our variable of interest):  
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We should still verify that the units combine correctly, 
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As it is given that each EDS is operational only a percentage of the time, we must discount the time by this 
constant, , yielding Ω
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We add the ceiling brackets because the number of EDS must be whole; we postpone the justification for 
always taking the ceiling value until after we have calculated some values.  We will now show the derivations 
of  and T.  Discussion of the latter variable will be deferred for the moment.   peakB
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1.1.2 Deriv ng  i peakB
 We define B  as the aggregate of the number of bags on each flight.  To calculate the number 
of bags on one flight, we must multiply the number of passengers on the flight by the number of bags each 
carries.  Both values depend on probabilities.  The average number of bags per passenger, 

peak

b , is b 21 2b+ , 
with b  and b  defined as the percentage chance that a passenger will check one bag and two bags, 
respectively.  Likewise, the data table found in the Technical Information Sheet (TIS)

1 2
3 lists seating capacities 

of eight flight types involved in our peak hour, but the number of passengers per flight depends on the 
probability that those seats are filled, .  By multiplying the number of bags on one flight, 

idseatsfilleP

iditb seatsfilleP , by the number of flights of the same type departing in the peak hour, , we get the total 

number of bags on all flights of type i.  By summing up all eight flight types, we arrive at :   
in

peakB
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However, a couple other factors that influence  need consideration.   peakB
 Flight cancellations 

 It is given in the TIS that 2% of flights are cancelled daily.  However, in our flying experiences, a 
flight is generally not cancelled until after the bags have been checked and the passengers are waiting at the 
gate, or perhaps already on the flight.  When forced to, airlines tend to delay flights as long as possible, 
canceling only after all other options have been exhausted.  Thus, we will assume that the cancellation of 
flights does not affect the number of checked bags that the EDSs will be expected to scan for explosives.   
 
 Connecting passengers 

 Since all airports must scan 100% of bags being checked in, and since the typical installation 
location of the EDS machines are in the passenger check-in area, we assume that bags belonging to 
connecting passengers do not need to be rescanned, as is current FAA policy.  We define the percentage of 
non-connecting passengers, i.e. those originating in our airport, as 10: ≤≤ origorig PP .   
 
Including these factors into equation (2), we get: 
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By collecting the constants b  and , factoring them out of the summation quantity, and defining our 

summation shift constant as
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3 See Appendix A 
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1.1.3 The Cost Function Caveat: “It’s the economy, stupid.” 
 The ultimate goal of this assignment is to minimize cost.  This model’s cost function (in thousands of 
dollars) for Airport A is )1100()( ω+= EDSEDSA QQC

)
, and for Airport B, 

1080()( ω+= EDSEDSB QQC , where ω  is the operating cost per machine, and 1100 and 1080 are the 
costs to purchase and install the machines at each airport, given TIS data.  The latter two quantities are, for 
the purposes of this model, immutable.  Thus, cost is directly dependent on Q , and for the current 

discussion, we will ignore the cost function and focus on minimizing , thereby minimizing cost.   
EDS

EDSQ
In order to minimize , we can either reduce  or increase l  or EDSQ peakB T . 
 

Minimizing  peakB
 Decreasing B  would involve many factors: having passengers check fewer bags or reducing the 
number of passengers flying during peak hour via flight cancellation or rescheduling to non-peak times.  
Flight cancellation – i.e. lower airline revenue, fewer choices of flights for consumers, and the semblance of 
ineptitude on the part of the Transportation Security Administration (TSA) and the individual airports’ 
administrations – is clearly undesirable.  Rescheduling to non-peak times seemingly would be desirable, but 
surely the airlines and airports have already tackled this issue in the past, as flight delays already are a chronic 
disorder, so further progress in rescheduling cannot be expected.  Finally, requiring passengers to check fewer 
bags – which the threat of longer wait times might indirectly accomplish – would be unpopular among 
passengers; furthermore, merely suggesting passengers to bring less checked luggage cannot be relied upon.  
So, to minimize , we must look instead to maximize l  and 

peak

EDSQ T .   
 
Maximizing  l
 The problem states that , the number of bags per hour that each machine can process, is between 
160 and 210.  We assume that this range is dependent on the competence of the EDSs operator.  Thus, by 
instituting a more comprehensive and extensive training regimen, we can hope to increase , thereby 
lowering the number of EDS devices needed.  We also assume that the savings due to needing fewer 
machines outweigh the costs of increased training.  Acknowledging that other factors could limit the 
machine’s output, and fearing an overly optimistic view of education’s benefits (big joke setup…), we have 
estimated l  to be a modest 190 bags/hour/machine.   

l

l

 
 
Maximizing T  
 Before we begin, we should establish the schedule and procedures of an airport and some intuitive 
conclusions that derive from them.  All airlines and airports suggest an amount of time that passengers 
should arrive early to ensure smooth check-in and boarding.  They also have a certain time that is absolute 
and inflexible – not merely recommended – such that after this time, a passenger may not check-in and board 
his or her flight.  We label this quantity of time before departure as τ  and, accounting for current airline 
trends and data supplied by the TIS, give it the value of 45 minutes, or 0.75 hours, unless otherwise stated in 
the paper.  Because τ  is the time before a flight at which all passengers who will board the flight must be present, τ  is 
also the time before a flight at which all bags will be present.  We, for now, will disregard the effect of 
passengers arriving earlier than τ  before their flight.  Thus, the EDS operators can be guaranteed that they 
will have µτ −  in which to process the bags for each flight, where µ  is the time needed for bags to travel 
the labyrinth of conveyor belts, be placed on the baggage cart, and be loaded onto the plane.  As we have no 
data for µ , we have arbitrarily set its value at 6 minutes, or 0.1 hours.  Given these assigned values, EDS 
operators have at least 39 minutes, or .65 hours, to process the bags for each flight.  Our task now is to 
maximize this amount of time. 
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 Now, if we were to assume that the peak hour is the only hour in which flights leave the airports, 
EDS processing for the peak hour can begin 45 minutes before the first flight, and the last bag of the last 
flight must finish being processed 6 minutes before the end of the hour.  Thus, we have at most 1 hour and 39 
minutes, or 1.65 hours, to process all of the peak hour bags.  Therefore the total time 65.11 =−+= µτT .   
 To best use this maximum time interval, we need a steady supply of bags coming in, which entails a 
steady flow of bags out, so that we can choose the minimum number of EDSs to purchase.  A steady supply 
would allow The machines to operate at maximum output for the entire time interval, while an uneven 
distribution of bags arriving to be processed would require at certain times greater output and thus more 
machines and higher cost, and at other times less output, meaning idle, unproductive, expensive machines.  
Clearly, dealing with quantized flights and numbers of bags per flight, we cannot guarantee a perfectly steady 
influx of bags, but, as we will show in Task 3, we can come close enough to reap the benefits, and thus to 
assume a constant flow of bags in.   

With this point sufficiently established to continue, now let us revoke the assumption that the peak 
hour is the only hour of flights at the airport.  The bags in the hours immediately before and after peak, by 
definition fewer than , can be processed in less time than needed to process .  When the peak 
hour’s first bags arrive 45 minutes before the peak hour begins, we cannot yet assume that the EDSs will be 
available to process them because flights departing during the hour before peak will have bags that need to be 
processed.

peakB peakB

4  In a similar manner, we cannot assume that the EDSs can process our peak hour’s bags all the 
way up to last moment since the bags of the next hour’s first flight will likely require more than a few minutes 
to process.  So, we should expect possible encroachments of our 1.65-hour maximum time interval from 
EDS demand from the hour before peak and from the hour after peak, shouldn’t we?  Using some empirical 
data and some mathematical tricks, we can, however, assume that the quantity of baggage in other periods has 
no effect on the simple model that ignores other periods.5  So, we define µτ −+=1T  and arrive at our final 
version of the model, 
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 Now we are ready to define our constants and compute the optimal QEDS values.   
 
 
 
 
1.2 Solving for the optimal QEDS  

 
 
Calculating   peakB
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We will commence by examining each component of the above equation.  It is given that 20% of 
passengers check no bags and that another 20% check just one bag; thus, the remainder of the passengers, or 
60% of them, check two bags.  So, the average number of bags per passenger is:  
  

1.4  2(0.6)  1(0.2)  0(0.2)b =++= 
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5 For the said data and trickery, see Appendix B. 
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  is given to be between 70% and 100% for flights of type 1 through 3, between 60% and 
100% for flights of type 4 through 7, and between 50% and 100% for type 8.  Through analysis of airport 
data, we calculated average values

idseatsfilleP

6 for  such that  
idseatsfilleP

    8679.=
idseatsfilleP     for  1 3≤≤ i  

8194.=
idseatsfilleP     for 4 7≤≤ i  

7705.=
idseatsfilleP      for       8=i  

  
 Regarding connecting passengers, statistics show that, on average, 15% of passengers are from 
connecting flights.  Data from airports serving as hubs show even higher percentages, and since Airports A 
and B are described as “two of the largest facilities in the region,” we infer that their percentages of 
connecting passengers are likely higher than 15%.  Lacking precise data for A and B, however, we have 
conservatively estimated 15%.  So, the number of passengers that require scanning can be reduced by 
multiplying the total passengers by 0.85, or Porig.   
 
Including b  and Porig into equation (3), we get: 
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which, by factoring out the probabilistic constants, yields the final equation,  
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Substituting in Airports A’s and B’s values for t  and , which are given in the Technical Information 

Sheet
i in

7, and our values for , which are given above, we calculate the following: 
idseatsfilleP

528616.5286 ≈=peakAB  bags 

568357.5682 ≈=peakBB  bags 

Now we can proceed to determine the minimum  sufficient to process  at each airport. EDSQ peakB
 
Calculating EDSQ  
 

)1)(( µτ −+Ω
=

l

peak
EDS

B
Q 

 
 
To solve the above, we will move through each component of the equation.  First, we have determined the 
value of  for each airport with the formulas shown earlier in this section.  We are given that an EDS is 

operational 92% of the time, which is denoted here as 
peakB

Ω .  As noted previously, we will use ℓ = 190 as an 
average value for the rate of bags per machine per hour.  The value for τ is for now constant, as is µ: 
τ = 0.75 and µ = 0.1.  Using these values and the respective values of  for each airport, we arrive at the 

following values for : 
peakB

 EDSQ
 

                                                      
6 For data, derivation, and justification of these numbers, see Appendix C.  
 
7 Please see Appendix A for raw data given in the Technical Information Sheet (TIS). 
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Airport A:  

)1.075.01)(190)(92.0(
5286

−+
=EDSQ 

 
 
 

  1933.18 ==EDSQ 
 
 Airport B:  
 

)1.075.01)(190)(92.0(
5286

−+
=EDSQ 

 
 

  2070.19 ==EDSQ 
 
Justification for rounding up the  and contemplating the “what-ifs” EDSQ
 To extend our model, we need to show how changes in some variables affect the amount of time 
needed to process .  Here, we solved our Q  equation for T: peakB EDS

EDS

peak

Q
B

T
lΩ

= . 

By substituting 1.65 hours (simply derived from 1 + τ − µ, with the stated values of τ = 0.75 and µ = 0.1), we 
determined the change in time caused by a change in one of the variables.   
 
The ceiling of  EDSQ

Here we will justify why we took the ceiling of the non-integer values we calculated in Q , rather 
than the floor.  The following tables tell us the delay in minutes (rounded up) resulting from varying levels of 
the number of occupied seats and varying values of possible l .  The three levels of occupied seats that are 
shown in this table represent the situations when all the flights during peak hour are at full capacity, when the 
flights are at the average capacity that we carefully estimated, and when the flights have the minimum number 
of seats filled.  The minimum number of seats filled is determined by multiplying the total seat capacity by the 
minimum percentages set forth on the Technical Information Sheet.  Likewise, the maximum and minimum 
values of are taken from the given values in the problem description, while = 190 represents the value 
that we have used in most of this paper.  Zeros in the tables below represent calculated delays of 0 minutes or 
less. 

EDS

l l

 
        Table 1a - Delays for Airport A          Table 1b -  Delays for Airport B 

l  
Maximum 
Seats Filled 

Average 
Seats Filled 

Minimum 
Seats Filled 

160 39 14 0 
190 17 0 0 
210 6 0 0 

l  
Maximum 
Seats Filled 

Average 
Seats Filled 

Minimum 
Seats Filled 

160 41 17 0 
190 19 0 0 
210 8 0 0 

 
If we had taken the floors of the respective Q ,18 and 19, then with the average number of filled seats and 

=190, we would have ended up with an average delay of  about 2 and 3.6 minutes.  We believe that any 
delay is unacceptable in the average case.  To uphold the dignity of the Transportation Security 
Administration, we have removed any delay in the average case by taking the ceiling of the original non-
integer values for the number of machines (18.33 and 19.70, respectively).  Thus we arrived at the values of 
19 and 20 machines, respectively. 

EDS

l
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To generalize this a bit, when an airport discovers the number of machines it requires, and the 
number is a non-integer, then said airport should take the ceiling of that number (or, in other words, always 
round up to the next highest integer, even if the value is close to the integer lower than it).  Otherwise, 
frequent delays can be expected. 
 
 
1.3 Exploring φ  

When calculating the total number of bags, we multiplied our summation by the constant of 1.19 to 
arrive at our model’s Q  data.  This number comes from: EDS

 
)(%*)/( passengersconnectingnonofpassengerbags −−−=φ 

The bags/passenger is dependent on the percentage that bring 0, 1, and 2 bags, which were given as 20%, 
20%, and 60% respectively.  We arrive at φ=1.19 with the following values: 
 19.1)85.0*4.1()85.0(*))6.0*2()2.0*1()2.0*0(( ==++=φ
 
As mentioned earlier, we estimated that the percent of non-connecting passengers to be 85% for our model.  
However, the percentage of non-connecting passengers is not likely to vary greatly on a daily basis, and 
therefore we do not explore the change of this number in our model.  If Airports A and B have different 
non-connecting passenger values, it would only mean a mere simple modification in our calculations.  
However, we do need to explore the variance in the number of bags per passenger.  During times such as 
holidays, it might be that the passengers are more likely to carry more bags.  To account for this, we’ll 
examine the extreme of each passenger carrying on two bags: 

7.1)85.0(*)00.1*2( ==φ  
Thus, since we have already examined the scenario when φ  = 1.19, we shall explore the model when φ  = 
1.7.  Using 19 machines for Airport A, and 20 machines for Airport B, we get the following results for the 
delay in minutes (once again, rounded up) with various occupancies on the airplanes and various rates, ℓ: 
 

 
 
 
 
 

Table 2a - Airport A 

l  
Maximum 
Seats Filled 

Estimated 
Seats Filled 

Minimum 
Seats Filled 

160 98 63 21 
190 67 37 2 
210 51 24 0 

Table 2b - Airport B 

l  
Maximum 
Seats Filled 

Estimated 
Seats Filled 

Minimum 
Seats Filled 

160 101 66 24 
190 70 40 5 
210 54 27 0 

 
 

As one can easily tell, there is a much higher delay when every passenger is checking two bags in.  
Since we are in the mindset that passengers will carry more bags during busier times, we can also keep in 
mind that there will probably be more seats filled during this time period as well.  So we will just examine the 
scenario if the all the seats are filled on a given flight.  However, since these busiest times of the year occur so 
rarely, we believe it is not worth buying the extra machines to handle this overload, when they are not 
necessary during the majority of the year.  Doing so would result in an increased number of idle machines for 
the rest of the year, which would not only be idle, but would take up more space in the airport’s lobby and 
decrease the flow of passengers through the check-in process.  This would increase the delay of flights, 
further decreasing the already diminishing returns from additional machines.  A possible solution to this 
increase in baggage is to turn to more temporary solutions, such as the renting of other portable screening 
devices, or the temporary hiring of extra workers or K-9 dogs.  This solution will be discussed further in Task 
7, with the introduction of ETD machines. 
 
 So, in summary, referring back to Tables 1a and 1b, let us discuss three different scenarios.  First, the 
worst case scenario: on the busiest day of the year in Airport A or B, for instance the Wednesday of 
Thanksgiving week, when every flight in the Peak Hour is absolutely full, if the EDS is operating at its lowest 
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rate (ℓ=160), then there will only be about 50 minutes of delay.  We believe this is acceptable, since on the 
Wednesday of Thanksgiving week, there are other delays anyhow, so the airplane would possibly be an hour 
late anyhow.  However, at the maximum capability of the EDS, the delay would only be about 15 minutes on 
this same day.  This is an acceptable delay time, according to the FAA. 

The average case scenario: on an average day of the year in Airport A or B, when the flights are at 
their average occupancy, if the EDS is operating at its lowest rate (ℓ=160), then there will be about 25 
minutes of delay.  However, if the EDS is operating at its average rate or better, there will be no delay. 

The best case: on the best day of the year in Airport A or B, when the flights are at their minimum 
“typical” occupancy, there will be no delay, no matter what rate the EDS is operating at. 

 
 
1.4 Exploring τ : The effects of peak severity on τ , the mutability of τ  
 
 As we show in Appendix B, based on our assumptions and on empirical data, the number of non-
peak hour bags, related to  bypeakB kγ  (where k is the number of hours after peak and –k is the number of 
hours before peak), are most likely going to be low enough not to impinge on our ability to use 

µτ −+=1T  hours to process .  This means that  peakB

µτ
γ

−+
≤≡ +

1
1

peak

kpeak
k B

B
. 

The 1 in the above equation has units of hours.  We cannot hope to change the daily flight schedule to 
remove peaks at certain hours; thus, peak hours and kγ  values are out of our control.  However, how can we 
optimize our model to account for higher and lower kγ  coefficients? 
 
Higher kγ  

Momentarily assuming an even distribution of bags over multiple hours, the rate rm,n of bag 
processing is the number of bags to be processed divided by the time, where m is the number of hours before 
the peak hour, and n is the number of hours after the peak hour.  The rate needed to process the peak hour’s 
bags and the bags from the previous hour is the total number of bags divided by the total time: 
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Generalizing for all hours before and after peak hour, we get 
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that is, the minimum rate of EDS output needed to process all bags in one day, where m is the number of 
hours before peak and n is the number of hours after peak.  Therefore, including the actual peak hour, the 
total hours of flight operations is .  Thus, assuming that Airports A and B are not traveling close to 
the speed of light, n hours.  In practice, many airports partially or fully close for a few hours 
each day after midnight; this separation allows us to treat all days separately.   

1++ mn
241 ≤++m

 We cannot, however, in practice assume even distribution of bags over the entire day; hence, the 
existence of peak hours.  When kγ  is relatively large, i.e. greater than the inverse of µτ −+1 , the quantity 
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of bags  will strain the EDS system in the same way that  does, limiting the amount by which 
we can level the peak.  

kpeakB + peakB

 

µτ −
peak

+
==

10,0 peak

B
rr

µτ − τ

τ

Figure 1a          Figure 1b 
 

As the diagram shows, since the hour before peak requires a greater EDS throughput rate than  

, 

we must increase the rate to r1,0  , thus increasing the number of EDS needed.  The period before peak 
subsequently appropriates some of .  Thus, increasing  under these conditions yields more sharply 
diminishing returns, as the mandatory early arrival time becomes increasingly shared with the other periods.  
This makes intuitive sense: the less significant a peak, the less special attention it deserves, just like a mediocre 
middle sibling.   

This is a very important fact: at airports with less acute peak hours, passengers should not be forced 
to arrive unnecessarily early, reducing wait time – something that will make air travelers happy.  Less waiting 
time reduces the total time of a flight, thereby lowering a potential passenger’s opportunity cost to fly.  This 
should result in more air customers, thus increased revenue for airlines – an important consideration, 
especially in the post-September 11 market.  Consequently, increased numbers of passengers would strain the 
EDS system already in place.  This equilibrium-seeking effect, although interesting, will not be included in 
this model.  Nevertheless, the potential benefits of choosing a proper  have been noted.   
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Lower kγ  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  
          Figures 2a, 3a             Figures 2b, 3b 
 
 Under these conditions, the full µτ −+1  can be used by the peak period.  A relative peak still 
exists; the lower the kγ , the greater the peak.  So, we can increase τ  until  

µτ
γ

−+
=

1
1

k , 

generating a plateau on the lowest possible rm,n value, thus minimizing the necessary number of EDS.  Of 
course, raising τ  past a certain point, even if kγ  is still less than the inverse of µτ −+1 , is not good: just as 
passengers love shorter wait times, they also become riotous when forced to wait for hours.   
 
Other considerations 
 However, τ  is less mutable than we would like.  Mandatory early arrival times are generally set by 
the airlines, not the airports.  While airlines do have a vested interest in choosing an appropriate τ , the threat 
of a free rider problem exists.  That is, with a τ  of one hour, for example, an airline could cut their τ  to 30 
minutes, and thanks to our baggage prioritizing system, in which bags are sorted for processing according to 
the proximity of their flight’s departure time, reap the benefits of a speedy EDS inspecting regime while 
appearing more attractive to air customers due to its short wait time.  This possibility puts pressure on other 
airlines to cheat the system and do the same, bogging the EDS process down and causing delays.  We, 
however, are optimistic in the ability of the major airlines, under the advice/coercion of the TSA, to collude 
and minimize this risk.   
 Another problem is that of standardization.  Even if we can optimize the τ  for our airports, we need 
to consider the rest of the airports in the country.  A national system in which all airports require passengers 
to arrive at different early times would cause great confusion for travelers.  Add to that the problem of 
quantization, that times are generally expressed in rounded, specific numbers, such as 30 minutes, 45 minutes, 
etc.  We cannot tell people to show up 43.68 minutes early for a flight.  Thus, some pragmatic sacrifices to 
efficiency will need to be made.  As we have shown, assuming a 45-minute τ  and relevant kγ  values in the 
acceptable range, we believe that our τ  assumption is reasonable.  Other values for our variables would 
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affect the ideal τ , but optimizing τ  should be a final consideration when applying the model to other 
conditions.   
 
 
 

2. Task 2 
2.1 Position Letter to Accompany Task 1 
 

One of the airlines’ primary security-related objectives is to prevent explosives from ever reaching 
the plane.  In order to do this, one must have an effective system of explosive detection.  The Federal 
Aviation Administration (FAA) has determined that the Explosive Detection System (EDS) is effective, and 
new laws have mandated the inspection of all checked bags with these machines.  These machines, however, 
are costly.   

We have developed a mathematical model to determine how best to implement the EDS system, 
maximizing security and minimizing the cost to taxpayers.  Even though some of the variables in our model 
are solely within the domain of the airport’s administration, there are several constraints under which the 
airlines must operate in order for our model to be optimized.  For instance, the minimum early passenger 
arrival time is set by each individual airline (i.e. how long before departure the airline closes bag check-in, 
labeled τ  in the model).  If the quantity of EDSs remains constant, then by increasing or decreasing the 
minimum early passenger arrival time, the airline is increasing or decreasing, respectively, the time available to 
process the bags before each flight can take off. 

Another variable that affects our model is the time that it takes for a bag to travel between the EDS 
and the airplane, labeled µ in our model.  We do not know what power the airline wields over this variable, 
but if there is any possible way to decrease this time variable, then the overall model will be more efficient.    

Cooperation between the TSA and the airlines is essential on these issues.  Other than these, though, 
there is nothing that the airline can do that will directly affect the model’s efficiency.  However, the airline can 
work with the airport administration in optimizing other factors, so as to minimize delay for their own flights.  
Such variables might include obtaining more efficient machines (by possibly contributing money to the 
advancement of research in the fields of science, technology, engineering, and mathematics, with relation to 
explosives detection), or educating airport employees, so as to increase the efficiency of such variables as the 
travel time of a bag between the EDS and the airplane or the rate at which the EDS can process bags. 

 
3.Task 3 
3.1 The algorithm 
 

As we discussed earlier, the ideal situation is when the flow of incoming and outgoing bags remains 
fairly steady.  Therefore, since the number of bags depends on the number of passengers, the flights should 
be distributed such that the number of passengers checking bags and departing remains as constant as 
possible over the peak hour. 

We developed the following algorithm to help airlines determine how to schedule the departure of 
different flight types within the peak hour so that the number of passengers, and, consequently, the number 
of bags, is evenly distributed.  Assumptions put forth at the beginning of this paper hold true here as well: 
 

1. Obtain data on the number of flights and seats on each flight  
 during the peak hour. 
2. Modify the seat data to represent the average number of people  

on each flight.  To do this, multiply by the estimated  
percent of seats filled for the type of the given flight. 
e.g. for a flight with 34 seats, multiply by 86.79% 
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3. Calculate total number of people on all flights during the  
 peak hour. 
4. Determine the desired number of time intervals during the peak  
 hour.  We chose 6 as an appropriate number. 
5. Determine the average number of people to fly during each time  

interval. Allocate that number of “spaces” for each interval, 
i.e. total number of people divided by 6 

6. Do the following n times (where n = total number of flights): 
a. Find the flight with the most people on it. 

 b. Starting at the first interval, and searching    
 sequentially through to the last, find the time   
 interval with the most number of “spaces” still   
 available. 
 c. Assign said flight to this time interval. 

d. Subtract the number of available “spaces” by the number 
 of people on said flight. 

7. Make sure there is a flight at :00 and :59 to ensure the efficiency 
of our model, so as to maximize the time interval available for 
processing and allow the constant use of our machines at full capacity, 
thus preventing idleness, which is the devil’s workshop.  To do this: 

a. For the first 30 minutes, start at the beginning of the 
time interval and evenly distribute the interval’s assigned 
flights in order of decreasing flight capacity and 
increasing time. 

b. For the second half hour, start at the end of the time  
 interval (:39, for instance) and evenly distribute 
 the interval’s assigned flights in order of  
 decreasing flight capacity and decreasing time. 

 
Essentially, we are evenly distributing the flights scheduled in this peak hour among six 10-minute 

intervals.  The flights were modified to represent the average number of passengers per flight, rather than the 
number of seats per flight, since the former has more impact on the number of bags that will be scanned than 
the latter.  The manner in which the flights were distributed among those intervals is analogous to filling a jar 
with different-sized rocks.  One begins by adding the largest rocks, then smaller rocks, then pebbles, then 
sand, and finally water.  With each additional step, you are filling in gaps.  If you start with water and fill up 
the jar, then there is no room left for anything else.  Thus, we start with the larger capacity flights and move 
our way down. 
 Please see Appendix E for a computer program written in C++ that implements the above 
algorithm, and thus proves that this algorithm works.  This program was run using data from Airports A and 
B.  The exact output for Airport A can be seen in Appendix E, but the summary for the output of Airport A 
follows. 
 
Table 3 
Flight 
Interval: 

 Type 1 
Flights 

Type 2 
Flights 

Type 3 
Flights 

Type 4 
Flights 

Type 5 
Flights 

Type 6 
Flights 

Type 7 
Flights 

Type 8 
Flights 

:00->:09 2 0 1 0 3 0 0 1 
:10->:19 2 1 0 1 3 0 1 0 
:20->:29 2 1 0 1 2 2 0 0 
:30->:39 1 0 1 0 4 1 0 0 
:40->:49 1 2 0 0 4 1 0 0 
:50->:59 2 0 1 1 3 1 0 0 
Total 10 4 3 3 19 5 1 1 
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Now that we have the flights distributed among the 10-minute intervals, we can evenly distribute them within 
each interval.  A potential schedule follows: 
 
Table 4 
 Flight Type by Minutes  (such that :x1 = :01, :11, …, :51) 
Flight Interval :x0 :x1 :x2 :x3 :x4 :x5 :x6 :x7 :x8 :x9 
:00->:09 8 5 5 5 3 1 1    
:10->:19 7 5 5 5 4 2 1 1   
:20->:29 6 6 5 5 4 2 1 1   
:30->:39    1 3 5 5 5 5 6 
:40->:49   1 2 2 5 5 5 5 6 
:50->:59   1 1 3 4 5 5 5 6 

 
The following graph shows the number of bags still left for the EDS to process after each minute in Airport 
A, as a product of time: 
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Figure 4 

 
Since the preceding graph is fairly linear & positively increasing until the bags stop coming in, and never dips 
down into the negative values for x until the end of the peak hour (here, defined from 0 to 59 minutes), we 
can accept this graph as proof that the algorithm works for Airport A. 

To justify this assertion, we propose some intuitive counterexamples.  Suppose all flights depart at 
the same time; thus, all bags arrive at the same time.  EDS operators only have 39 minutes to process all bags, 
and condensing the busiest hour of work into only 39 minutes would lead to excessive capital outlay for 
unnecessary EDSs.  Now let us suppose that all but one flight occur in the first half hour of the peak, with 
bags evenly distributed over the period, and the final flight occurs at the last minute.  Therefore, we have the 
45 minutes early arrival time from τ, plus the 30 minutes of flights, minus our 6 minute µ  to process the first 
half hour’s bags.  This is a total of 69 minutes to get the majority of the bags processed.  We would then have 
a remaining 30 minutes to process the bags for the lone last flight.  Unless this flight has a huge number of 
bags on it, such that the bags per minute that need to be processed equals the bags per minute that our 
machines are capable of, our machines will not be running to their fullest capacity during this last half hour.  
The most optimal set-up is if the machines are running at their fullest capacity during the entire processing 
time, which can only be ensured if the flights are spaced out such that the rate of processing remains fairly 
steady throughout T. 
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For Airport B, the summary of the distribution of flights among the six 10-minute intervals follows: 
 
Table 5 
Flight 
Interval 

Type 1 
Flights 

Type 2 
Flights 

Type 3 
Flights 

Type 4 
Flights 

Type 5 
Flights 

Type 6 
Flights 

Type 7 
Flights 

Type 8 
Flights 

:00->:09 1 1 1 1 1 1 0 1 
:10->:19 2 2 0 1 2 1 1 0 
:20->:29 1 1 2 0 2 1 1 0 
:30->:39 2 0 2 1 0 3 0 0 
:40->:49 1 1 1 1 2 2 0 0 
:50->:59 1 1 1 1 2 2 0 0 
Total 8 6 7 5 9 11 2 1 
 
A similar table for the minute-by-minute schedule for Airport B follows: 
 
Table 6 
 Flight Types by Minute 
Flight Interval :x0 :x1 :x2 :x3 :x4 :x5 :x6 :x7 :x8 :x9
:00->:09 8 6 5 4 3 2 1    
:10->:19 7 6 5 5 4 2 2 1 1  
:20->:29 7 6 5 5 3 3 2 1   
:30->:39   1 1 3 3 4 6 6 6 
:40->:49   1 2 3 4 5 5 6 6 
:50->:59   1 2 3 4 5 5 6 6 

 
The following graph shows the number of bags still left for the EDS to process after each minute in Airport 
B, as a product of time: 
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Since the preceding graph is fairly linear & positively increasing until the bags stop coming in, and never dips 
down into the negative values for x until the end of the peak hour (here, defined from 0 to 59 minutes), we 
can accept this graph as proof that the algorithm works for Airport B.  (Justifications for this are presented 
with the graph shown for Airport A.) 
 

Thus one has the proven minute-by-minute schedules for the peak hours of both Airport A and 
Airport B, and one can easily apply this algorithm to the peak hours of other airports. 
 
 
(Side Note: We welcome you to visit our response to Task 6, where we have explored the possibility of 
having to schedule more than 60 flights in one hour.) 

 
 
4. Task 4 
4.1 Memorandum to Mr. Sheldon 

Memorandum 
Date: February 10, 2003 

To: Mr. Sheldon and Airlines 

From: The Analysis Team 

RE: Task 4: Recommendations on Checked Baggage Screening for Flights During the Peak 
Hours at Airport A & Airport B 

Priority: High 

Because the EDS machines are so expensive, we have aimed to find a way to minimize the number 
of machines needed so that the cost to the airports is reduced.  Our model and cost function show that there 
are several ways to minimize needed machines and maximize efficiency. 

First, operator training is crucial, not only in effective explosive recognition but also for time-efficient 
bag processing.  There obviously is a limit on how fast the EDS machine can work, processing a certain 
number of bags per hour.  However, operator inefficiencies can also slow this down, so if the rate of bags 
processed per hour were to increase through an increase in training, the money saved from having to buy 
another machine will surely be worth it. 

In addition, by maximizing the amount of time we have to process peak hour baggage, we minimize 
the number of needed machines.  Therefore, a recommendation of our model is to require passengers to 
check their baggage no later than 45 minutes before the flight.  Currently, the standard for arrival time is 
between 30 and 45 minutes before the flight, but in the light of the TSA’s requirements for 100% baggage 
screening, requiring an arrival time of 45 minutes seems reasonable. 
Related to the amount of processing time available is the amount of time that must be reserved for 
transporting the baggage from the EDS machines to the airplanes.  If this time can be minimized, for 
example using an efficient system of conveyor belts, than more there will be increased time to process peak 
hour baggage. 
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One of our more significant recommendations that our model puts forth, a recommendation that we 
have assumed to exist in this model, is the idea of prioritizing baggage as they come in.  For example, if one 
person arrives 2 hours ahead of their scheduled flight, and another person arrives at the same time, but their 
flight is in 45 minutes, then the latter person’s checked bags will be processed by an EDS before the former’s.  
We believe that it is cost-effective to pay someone to prioritize the bags since it is cheaper to pay a few people 
to prioritize bags than to buy another machine to cover such inefficiencies. 

Finally, our most significant recommendation on the checking of baggage is the aim for a steady flow 
of incoming and outgoing bags during the peak hour.  By doing this, we ensure that the maximum capacities 
of the machines are used during the entire peak hour.   This can be accomplished by distributing the flights 
such that the number of incoming passengers for departing flights, and hence the number of incoming bags, 
remains steady over the entire peak baggage processing time. 

 
 
6. Task 6 
6.1 Memorandum to the Director 

Memorandum 
Date: February 10, 2003 

To: Director of the Office of Security Operations, Transportation Security Administration 

From: The Office of Mr. Sheldon, the Director of Airport Security for the Midwest Region 

RE: TASK 6: The Adaptation of a COMAP Model to all 193 Airports in the Midwest Region 

Priority: [Urgent]  

The algorithm presented in the model (under Task 3 of paper) can be easily adapted to all of the 193 
airports in the Midwest Region.  This memo will explain how this adaptation can occur. 

 
The algorithm takes into account peak hours with less than 60 flights.  However, it is possible to have 

more than 60 flights in this hour, if the airport is extremely busy.  In this scenario, there would be more than 
10 flights in each 10-minute interval.  If this occurs, then an easy fix to the algorithm presents itself: during 
the scheduling of the flights in the minute-by-minute schedule, when each minute in the 10-minute interval 
already contains one flight, start over at the last minute, and work your way down.  It is done in reverse, since 
the larger flights will already be at the beginning of the interval.  Thus, this manner will balance out the 
number of passengers over the interval, more so than not working in reverse.  Of course, if there are more 
than 20 flights, then one would start at the beginning again after working back to the first minute.  Case in 
point, if there are 15 flights in the first 10-minute period, then distribute the first 10 flights so there is one 
flight every minute, :00 through :09.  Next, distribute the remaining 5 flights so there is one flight every 
minute, :09 back through :05.  Another case would be if there are 23 flights in the 10-minute period from :30 
through :39.  For this case, you would distribute them as above: distribute the first 10 flights so there is one 
flight every minute, :30 through 39.  Next, distribute the second 10 flights so there is another flight every 
minute, :39 back through :30.  Finally, distribute the remaining three flights so there is a third flight every 
minute, :30 through :32. 
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 As shown in the equations expounded on elsewhere in this paper, there is a direct, linear relationship 
between the number of bags and the number of machines.  Thus, when the number of bags is increased due 
to increased traffic at a given airport, the number of machines will be directly increased.  For example, if at a 
certain airport, there are B bags and QEDS machines, and at another airport, there are 1.6*B bags, then the 
latter airport would require 1.6* QEDS machines.  The same holds true if the number of bags is decreased, due 
to less traffic at a given airport.  In this case, one would use the same idea, but the factor would be between 0 
and 1. 
 
 If there is an increased µ at a specific airport and all else remains equal, then the τ should be 
increased equally to counteract the effects of the increased µ.  This allows the total time to remain constant.  
An airport should pay attention to this if the time it takes to transport a bag from the EDS to the plane is 
significant. 
 
 

 
 
7. Task 7 
7.1 Cost analysis of EDS and ETD 
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),,( ΖωαC  = total cost of recommended system, as a function of α, ω, and Z 

peakB      = total number of bags during the peak hour 

α         = percentage of  that the EDS will screen peakB
ω      = operational cost of the EDS per hour, operational cost of the ETD  
  machine is 10 times this amount. 
Ζ      = years 

ic      = installation cost of EDS, dependent on airport, in thousands 
l           = throughput rate of each machine, in terms of bags/hour/machine 
Ω      = percent of time that the machines are operational (given constants) 
τ       = minimum early passenger arrival time, in hours 
µ      = travel time of one bag between EDS and the plane, in hours 
1000, 45     = buying cost of EDS and ETD machines, respectively, in thousands 
 
Assumptions: In addition to our previous assumptions, we also assume here that the installation cost of the 
ETDs are negligible. 
 
 
7.1.1 Deriv ng the Modeli  

By requiring that 20% of all bags get screened through both an EDS and ETD machine, the effective 
number of bags to screen increases by 20%.  The number of bags that will go through the EDS, BEDS, plus 
the number of bags that will go through the ETD machine screening, BETD , must equal this effective number 
of bags.  Therefore,  
  

Page 21 of 43 



Control Number 465 
 

ETDEDSpeakeff BBBB +== 2.1      (eq. 5) 
 
The time that the airport has to screen all these bags remains the same as in our previous model, and 
therefore, τ and µ have the same values as given earlier.  (Although, Lao Tsu tells us that “The Tao that can 
be named is not the eternal Tao”, whereas in our model, τ is both known and finite.8)  Likewise, the equations 
to determine the number of EDSs will remain the same as it was in our previous model, and the number of 
ETD machines can be determined similarly. 
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Q       (eq.6, eq.7) 

 
 
So what does it cost? 

To determine the number of machines that would be optimal in each airport, we examine the effect 
that the quantities have on cost.  The initial cost of each machine will equal the cost to buy each machine plus 
the cost to install it.  EDSs are given as costing $1 million, while ETD machines are only $45K.  Luckily, 
ETD machines are usually fairly small and portable, so their installation costs are assumed to be negligible.  
However, the installation cost of EDSs, ci, is substantial: $100K for airport A and $80K for Airport B. 

In addition to the fixed cost of buying the equipment, however, the variable cost of operating the 
machinery is significant in our cost equation as well.  The variable cost per year is equal to the yearly 
operational cost of each machine, ω.  The ETD machine is given as requiring 10 times the operational cost of 
the EDSs, or 10ω.  Because this variable cost is dependent on time, the total cost at any given future time will 
depend on the number of years that the system has been running, which we designate here as Z.  Therefore, 
the variable cost of each machine equals the operational cost time the number of years. 

The total cost of our model, C(Z), is the fixed cost plus the variable cost of each machine.  All costs 
in the following equations are given in thousands. 

 
)1045()1000(),( Ζ++Ζ++= ωωω ETDiEDS QcQZC    (eq. 8) 

 
Substituting equations (6) and (7) into the above equation, we get: 
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However, we know that the number of bags going through each EDS is related to the number of bags going 
through each ETD machine by equation (4).  In addition, the number of bags going through each EDS is 
between 20% and 100% of the total number of peak hour bags.  We represent this relationship by the 
coefficient α, such that  0.2 ≤α ≤1. 
 

peakEDS BB α=                 (eq. 10) 
 
Substituting equation (10) and equation (8) into the cost equation, we are left with the important equation 
below. 
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8 Tao Te Ching by Lao Tsu 

Page 22 of 43 



Control Number 465 
 

 
Due to my practical knowledge of botched calculations, it is important to check that our units work.  
Remember that α is dimensionless: 
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As you might have noticed, our cost equation is a function of α, ω, and Z, since these are all variables that we 
will explore later.  We know the throughput rate of both machines, the required check-in time of the 
passengers, and the EDSs cost of installation.  We also know the number of bags during the peak hours.  
When applied to equations (6) and (7),  directly relates to the number of EDS and ETD machines that 
the airport will have and will therefore tell us how many of each machine we will need, once we decide on an 
appropriate α. 

peakB

 
Using Maple, we plot equation (11) as a function of α and keep ω constant.  (Here, we arbitrarily assume ω = 
$50K).  We can see in Figures 6a and 6b that after various number of years, the cost of the machine can 
significantly depend on the number of bags that go through each machine, which depends on α.  
     

 
   Figure 6a      Figure 6b 

 
Figures 6a and 6b demonstrate a crucial point: the function C(α,ω,Z) is linear, and the number of 

years, Z, affects its slope.9  Except for the particular Z value that makes the slope = 0, the first derivative test 
shows that only 0.2 and 1, the extreme values for α, can yield minimum values for C.  This means that there 
are two significant cases to study: 

(1)  the EDS-led system, in which EDSs are the first tier of baggage scanning, processing 100% of 
the bags, and ETD machines are the fail-safe, scanning 20% of the bags;  or, vice-versa, 
(2)  the ETD-led system, in which ETD machines process 100% and the EDSs scan 20%. 

The third case, when α is somewhere between these two extremes, will later be briefly discussed, and shown 
undesirable. 

 
As one can see, installing an ETD-led system (i.e. α = 0.2) would be beneficial only during the first 

few months.  This makes sense since the installation cost, a fixed cost, of an all-EDS system is very 
expensive, while the accumulation of the high variable cost of operating the ETD machines is kept 
comparatively low during these first months.  However, after a few months, it is optimal to have α at 1, or an 
EDS-led system, since this has a minimum cost as Figures 6a and 6b show. 
                                                      
9 If we had assumed a value for Z (number of years) and chosen multiple values for ω (operational costs), ω would 
determine the slope.  We will return to this relationship shortly.  

Page 23 of 43 



Control Number 465 
 

However, this graph assumes that the cost of operation of the EDS is $50K per year, which may or 
may not be realistic.   A different ω will affect the slopes of this graph, thereby affecting the time at which α = 
1 becomes optimal.  Therefore, by finding where the derivative of the Cost function is zero, we can find the 
critical turning point for our model at any ω, such that after this time, an EDS-led system would be more 
desirable than an ETD-led system.  Therefore the following is the partial derivative of equation (11) with 
respect to α: 
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When this equation is set to zero and solved for Ζ using cross multiplication, the following equation remains, 
a function of ω since all the other terms are constants. 
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Notice that ω is inversely related with Z(ω).  Also notice that Bpeak and (1+τ-µ) cancel out, thereby not 
influencing our model’s critical cut-off time.  Therefore, the only difference between Airport A and Airport B 
is the installation cost, which is unnoticeable when plotted.  With the help of Maple, Ζ as a function of ω is 
plotted for Airport A, as seen in Figure 7.   
 

Figure 7 
 
For (ω,Z) combinations on the curve, both ETD-led and EDS-led systems are equal in cost, but in practice 
this is a.  For (ω,Z) combinations below the curve, an ETD-led system is most cost-efficient; however, an 
EDS-led system is more likely to be optimal since the yearly operational cost of each machine, including full-
time wages for enough workers to operate each machine, will be high enough to make an EDS-led system 
cheaper in less than one year.  Given not only a life expectancy of EDSs around 10 years10 but also 
bureaucratic inertia, we cannot expect the EDS-ETD system baggage inspection system to be replaced soon 
enough so that an ETD-led system will minimize costs. 

With all this information, it seems pretty clear that an EDS-led system is more desirable than an 
ETD-led system.  However, a third case needs to be addressed as well.  In this case, α is neither 1 nor .2 but 
something in between.  Although this is not optimal in cost at any point in time, it is nevertheless a possibility 
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for our model.  However, momentarily ignoring cost, this system would not be practically beneficial either.  
In our other two cases, the airport would either be predominantly EDS or ETD machine with only 20% of 
the bags going through the other machine.  This means that whichever machine is predominant would be 
considered first tier (or at least at a higher tier than the secondary machine), and therefore all bags would pass 
through this tier first, and only pass to the second tier after an alarm has sounded or a bag is randomly chosen 
for secondary screening.  However, this third case would mean that both these machines are on the same tier, 
making for a more complex system of screening.  For example, with half the bags going to ETD machines 
and half the bags going to EDSs, operators would have to have some efficient method arranged so that those 
bags that sound alarms on one machine could be more carefully checked by the other without getting lost 
among its other bags.   

However, even though ETD machines become quite expensive after a short amount of time because 
of its high operational cost, its low fixed cost might come in handy in dire circumstances.  As mentioned 
earlier in the paper, airports might run into delays during the peak hours of peak times of the year, such as 
around Thanksgiving.  It would not be cost-efficient to buy extra EDSs just to handle these periods, however 
airports could buy extra ETD machines.  These machines could be stored and not used unless really needed, 
thereby saving on operational costs during much of the year.  However, determining the number needed and 
the actual efficiency of this suggestion, one would need to analyze the data regarding number of bags during 
these times of the year. 
 
Determining Q  and Q  EDS ETD

 After all this, we have finally determined that α should be set to 1, in other words 100% of the bags 
will go through an EDS.  Therefore, we can calculate the total number of machines to buy by plugging the 
numbers into our initial equations.  Here, we use a combination of equations 1, 2, and 6. 
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In order to apply this model to our two large, Midwestern airports, we estimated  = 47 
bags/hour/machine.  The reason we chose this number is because this was the average throughput rate of 
the ETD machines at the Summer Olympics in 2002.

ETDl

11  The other constants are the same values as we used 
in our earlier model: 
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Using these values, we calculate: 

1491.13

1933.18

≈=

≈=

A
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2070.19

≈=
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Note that, as should be expected, the  values for each airport are unchanged from previously when we 
had not yet considered the ETD machine.   

EDSQ

                                                      
11 Viggo Butler & Robert W. Poole, Jr.  “Rethinking Checked Baggage Screening.” 
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7.2 Memorandum to the Directors 

Memorandum 

Date: February 10, 2003 

To: Director of Homeland Security 

CC: Director of the Transportation Security Administration 

From: The Office of Mr. Sheldon, the Director of Airport Security for the Midwest Region 

RE: Task 7: Technical Analysis of the Advanced Screening Policy, Using Both EDSs & ETD 
machines 

Priority: High 

Due to additional security methods that require up to 20% of checked baggage to be screened 
through two systems, that is, both EDS and ETD machines, our model is slightly revised.  The number of 
machines that would be required to process the bags is directly related to the number of peak hour bags, as 
before.  However, we now have the factor of cost to consider, which will influence how many machines of 
each type to purchase. 

After analyzing the cost equation that incorporated the purchase costs, installation costs, and 
operational costs per year of each machine, we came to the following conclusions.  During the first few 
months after the new system is implemented, it is cheaper if the majority of the machines are ETD machines.  
In other words, 100% of the bags would be screened using ETDs and only 20% would be screened using the 
EDSs which would probably be considered second-tier screening (or at least a level below that of the ETDs).  
This is because the ETDs have a much lower initial cost than the EDSs.  However, as these machines are 
probably expected to last longer than just a few months, this system is probably not desired.  Therefore, the 
second option is to have 100% of the bags screened through the EDS machines, and only 20% through 
ETDs, which is the most cost effective method after only a few months.  This is due to the extremely high 
operational costs of the ETDs.  With this system, EDS machines would be the primary tier, while ETDs 
would be the secondary, used for rescanning random bags and bags that sound alarms. 

Purchasing enough EDS machines to screen 100% of the peak hour bags will have an initial cost of 
several million dollars.  However, such a policy is easily justified in the light of the millions of dollars that 
airports would save over the next few years in operational costs.  

 
 
8. Task 8  

8.1 Recommendations for future funding 
 

Although it is clear that an EDS-led system, with merely enough ETD machines to cover 20% of the 
bags, is optimal based on our calculations, it might not be the absolute best solution.  An important 
consideration is whether or not new technology might be able to replace the machines before the critical cut-
off time, as given in Figure 7.  For example, if current technology trends show that a better baggage screening 
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system will be ready in less than a year, it might be worth taking the risk and buying an ETD-led system.  
Then, within the year, buy the better machines, with lower operational costs, that can replace the ETD 
machines.  However, not only would this save very little, but this is quite a risk to take since your operational 
cost for the ETD machines will hurt the airport terribly if better technology does not come out in time.  
Therefore, our model shows that unless current trends show an immediate market introduction of new and 
advanced technology, the best solution for now is to have all bags screened by the EDSs, and only 20% of 
the bags are screened by the ETD machines. 

Down the road, however, we may need to re-evaluate the system.  Significant advances in the field of 
baggage detection devices are currently underway, and information can be found regarding the other 
possibilities that will probably emerge within the next few years.  Some of these new technologies are 
predicted to have increased accuracy rates, lower false positive rates, and higher speed capacities.  There is 
little available documentation regarding when such machines will be put on the market, but we can assume 
that in a few years, it might be beneficial to replace or significantly modify the system we are currently 
recommending.  How can we determine the conditions under which we should change baggage inspection 
systems? 

We must examine the variable costs involved.  Previously we have said that this means the operating 
costs, but now we want to consider the more distant future.  We need to account for the fact that we will 
have to repurchase the machines eventually.  Let ψ  be defined as the life expectancy of a machine.  
Factoring it into the cost function from Task 7, we get 
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Thus, every ψ  years, we need to repurchase and install machines.  As we have chosen an EDS-led system, 
we are interested mainly in the life of the EDS, which we have found to be about 10 years.12  Thus, at year 
ψ , we essentially start the cost function over, ignoring the sunk costs accrued over the previous years.  We 
will be more likely to change machines at this point due to the high costs facing us.   
 Let us now generalize our models to incorporate variables for a new machine, machine X, assuming 
that the decisions regarding any other necessary machines, i.e. for re-screening, will be decided independently 
of our model. 
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The new variable that has not been previously introduced in this paper is c0, the fixed cost of the machine 
(purchase cost plus installation cost).  Lacking data for future machines, we can only discuss the effects of in a 
change, ceteris paribus, in some of the variables relative to the EDS values, to show the effects on the likelihood 
of adapting these new machines.   

Clearly, one would want to keep the total cost, CX, minimized.  The rest of the exploration of these 
variables will examine that.  To maintain a low overall cost, it is desirable that the purchase and installation 
costs are low.  Likewise, the operating cost per year, ω, should be kept as low as possible. 

Generalizing the current technology and research in technology that exists now, there are two major 
categories of screening methods.  One category is that of large expensive machines that have a high 
throughput rate and low manual labor.  EDSs fall under this category.  The other category includes those 
machines that are fairly cheaper but require a large amount of manual labor and therefore a slower 
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throughput rate, such as ETD machines.  As we showed in our previous model between EDS and ETD-led 
systems, in the long run high initial fixed costs often outweigh high operational costs.  However, accurate 
comparisons between machine models and technologies are impossible without actual numbers regarding 
costs and efficiencies. 

In addition, the rate of the number of bags per hour that each machine can process, ℓ, should be as 
high as possible. Increasing the rate, for example to between 1000 and 2000 bags per hour – which the Pulsed 
Fast Neutron Analysis (PFNA) machine is expected to be able to do13 – can have a significant impact on cost 
because fewer machines will be needed.  Likewise, the percent of time that the machine is operational, Ω. 
should be kept as high as possible as to avoid having to buy extra machines to account for downtime. 

Other variables that we should heavily weigh are the false positive rate, the false negative rate, and 
the human reliability factor.  The false positive rate and the false negative rate should both be kept as low as 
possible, but it is more important that the false negative rate be extremely close to 0, as this affects the 
accuracy of the machine, while the false positive rate merely affects the efficiency of the machine.  Increased 
precision would not only increase the safety of our air traffic system but also reduce the number of 
secondary, fail-safe screening devices, thus saving money.  Currently, EDSs are widely reported to have 
between 22 and 30% false positive rates, which is ridiculously high.  New technology seems to be decreasing 
significantly this inefficiency, which will result in less required re-screenings and human intervention.  A 
machine with high false negatives used as a first-tier scanner (as in the EDS in the EDS-led system) is very 
dangerous, and to counter the threat of explosives slipping through, costly random screening of negatives 
with a second device will be needed, though still not eliminating the said threat.  In addition, as we just 
suggested, it is desirable to reduce a machine’s reliability on human interaction and interpretation, for “To err 
is human.”14  Operators, much like the writers of this paper, have a natural tendency toward error by nature 
of their species and are more likely to miss detection of a hidden explosive than a highly accurate and specific 
machine, and, thus, the machine should rely as little as possible on human interpretation, instead operating 
automatically.  Additionally, if fewer people are involved, the annual operating cost is slashed due to the 
reduced payout of wages.  
  
Research 

Logically, we believe that science, technology, engineering, and mathematics (STEM) research should 
be directed towards the development of machines that would increase both security in the aviation industry 
and the cost-efficiency of our model.  Science research should probably be directed towards discovering more 
advanced ways to detect explosive materials, including contact with government intelligence on new explosive 
materials, so as to be able to detect them in a timely fashion.  Technology research should go towards more 
automated methods.  Engineering research should go towards creating a smaller machine that is more 
portable and thus less costly to produce and install.  And the mathematics research should perhaps go 
towards creating a more complex model to include these factors.  We suggest a sort of international 
competition of undergraduate students.  Research should be conducted at such a pace so as to have a more 
effective and less costly alternative to the EDS-led baggage screening system at least before the EDS life 
expectancy expires, and new machines must be purchased.   

                                                      
13 Tsahi Gozani.  “Hearing On Role Of Military Research”  
14 Benjamin Franklin, http://www.brainyquote.com/quotes/quotes/b/q136956.html 
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8.2 Addendum to memorandum from 7.2 

Addendum to 
Memorandum 

Date: February 10, 2003 

To: Director of Homeland Security 

CC: Director of the Transportation Security Administration 

From: The Office of Mr. Sheldon, the Director of Airport Security for the Midwest Region 

RE: Task 8: Future Scientific Research Programs & Funding 

Priority: High 

New technology will most likely not affect our model because, even though extensive research is 
occurring as we speak, no new technology will be ready for the market in the few months for us to consider 
anything other than an EDS-led system for the airports. 

However, after a few years, a re-evaluation of the model may be necessary.  We can therefore 
generalize the model so that all the factors that affect cost can be examined.  In doing this, we find that 
technologies that have lower fixed and operational costs are recommended.  Research into increasing 
throughput rate is recommended, as well, for this would significantly cut the number of necessary machines.  
In addition, technology that has better accuracy, both in lower false positive rates and in lower false negative 
rates, would mean better efficiency and safer travel.  Finally, we recommend machines that are not as 
dependent on human interpretation, because doing so would both increase operational cost as well as lower 
the accuracy of machines in many cases. 

Therefore, in conclusion, we recommend funding research that will increase security while not 
significantly increasing cost.  Science research should probably be directed towards discovering more 
advanced ways to detect explosive materials, including contact with government intelligence on new explosive 
materials, so as to be able to detect them in a timely fashion.  Technology research should go towards more 
automated methods.  Engineering research should go towards creating a smaller machine that is more 
portable and thus less costly to produce and install.  And the mathematics research should go to perhaps 
creating a more complex model to include these factors, possibly by funding more COMAP competitions.  
Research should be conducted at such a pace so as to have a more effective and less costly alternative to the 
EDS-led baggage screening system at least before the EDS life expectancy expires, and new machines must be 
purchased.   
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9. Conclusion: Strengths and Weaknesses 
 
 The main strength of our model is that, like an organized crime leader, it is very difficult to make 
accusations of wrongdoing stick.  Throughout the paper, we have made an effort to show that the number of 
EDS machines determined by our model will work well even if some of the assumed constants and 
probabilities shift.  More accurate statistical data, as should or could be available to airport administrators, 
would yield a more correct optimal number of machines needed.  The delays caused by fluctuations in 
assumptions are, under most every case, within acceptable ranges for delay, i.e. delays for other reasons 
happening at the same time.  If this model is implemented, it should be stressed that the system is designed so 
that no extra delays should be expected.  If this argument is sold to the people convincingly enough, instances 
of delay should not make passengers more likely blame the EDS system over other causes for delay, such as 
waiting for connecting passengers, bad weather, or mechanical difficulties.  We already showed that extreme 
circumstances, such as holiday travel days, normally experience delays, and any delay in the EDS system for 
that day, if not compensated with temporary ETD machines, would run parallel to the delays already 
occurring in the airport, not in addition to.  Besides, air travelers will be willing to wait a few extra minutes 
occasionally if it gives them a sense of security that many lacked following September 11.   
 One weakness of our model is that we did not go into different methods for implementing the 
prioritization and queuing regime for bags entering the explosives scanners.  We considered several options.  
One is that the tags placed on the bags at the check-in desk could list departure time on it, thus allowing easy 
sorting.  This, however, does not allow for changes in departure time due to delays.  Another idea was to have 
a departure listing screen, like those posted throughout the airports for passengers, displayed by the EDS 
machines.  This list will be very long at a large airport, though, and would require EDS operators to recheck 
the display frequently.  These ideas should be considered in the implementation of this model 
 Another weakness is that we ignored the placement of the EDS machines.  We read and have seen 
that most EDSs are placed in the airport lobby near the check-in area.  In a large airport, this could mean that 
the machines are spread out over a large area.  So, the EDS machines could not work together like one unit, 
as our model implicitly assumes.  This would mean a loss of efficiency: machines at one end of the airport 
could run out of bags while those at the other end could have too many.  This problem could be remedied in 
the flight scheduling process, factoring in airline check-in desk placement in the even distribution of bags 
over the hour.  The scope of that undertaking is far outside what we can accomplish here, though it ultimately 
deserves consideration.   
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10. Appendices 
10.1 Appendix A 

Technical Information Sheet (TIS) 15 
 

Peak Hour Flight Departures for Airports A and B 
 

Flight 
Type 

Number of Seats 
on Each Flight 

Airport A 
Number of Flights 

of Each Type 

Airport B 
Number of Flights 

of Each Type 
1 34 10 8 
2 46 4 6 
3 85 3 7 
4 128 3 5 
5 142 19 9 
6 194 5 10 
7 215 1 2 
8 350 1 1 

Table 6 
 
10.2 Appendix B 
Determine the effects of non-peak hours on the maximum output rate  
and use empirical data to prove its inapplicability to observed conditions 
 
 By definition, the quantity of bags in the peak hour, , is greater than the quantity of bags in any 
other hour.  We can represent the quantity of bags in other hours as a proportion 

peakB
γ of the peak bags: 

10: <≤=+ γγ peakkkpeak BB  

where k is an integer denoting hours before or after the peak hour.  Therefore, 10 =γ , since the peak hour is 
k = 0.  Our initial relation in the model shows that EDSpeak Qr l92.0= .  At the peak hour, when no other 
hours matter,  

µτ −+
=

1
peak

peak

B
r  

That is, the total number of bags in the peak hour divided by maximum available time, yielding the rate of 
EDS output needed under these conditions.   

When we use all µτ −+1  to process , we only have 1 hour in which to process all of  

for .  But, as long as 

peakB kpeakB +

1±=k peak
k r≤peakB +

1
 (where 1 is the number of hours), the rate of EDS output 

needed to handle the peak period will be sufficient to process  in one hour.  Now we do some algebra 
starting from that inequality: 

kpeakB +

 

                                                      
15 Copied from the problem description. 
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Recall that the 1’s in the above equations have units of hours, making kγ  dimensionless, as it should be. 

Thus, as long as that inequality holds, r  is sufficient to process bags in all periods, and the  

determined by  is the minimum necessary quantity of machines.   
peak EDSQ

peakr
  

For our estimated τ  and µ  values, kγ  must be less than 0.606.  By analyzing empirical data, we 
learned that both the highest morning and evening peak hours were sufficiently greater than the neighboring 
hours such that 606.01 ≤±γ .16  Thus, we can operate at maximum time, 1.65 hours, without fear of other 
periods’ effects.   

Theoretically, however, it is possible for kγ  to exceed 0.606.  Later in Task 1, we will adjust our 
model to account for this possibility.   
 
10.3 Appendix C 

Methods of Discovery of Distribution of Seats Filled in a Given Flight 
Data from: (http://transtats.bts.gov/DL_SelectFields.asp?Table_ID=259) 

 
Data on all flights was taken from the “T-100 Domestic Segment” table in the “Large Air Carriers” 

database from the Intermodal Transportation Database.  The data consists of all flights originating in the 
United States in the year 2002.  Fields selected included “Passengers” (“Number of Passengers”) and “Seats” 
(“Available Seats”).  The data was sorted by number of seats in ascending order, and then by number of 
passengers in ascending order.  The percentage of passengers/seats was found for each flight.  The data was 
broken up into different sections, defined by the number of seats per flight specified by the Technical 
Information Sheet (TIS) in Appendix A of the problem description (that, is in sections of flights containing 
between 34 & 85 seats, flights containing between 128 & 215 seats, and flights containing 350 seats).  For 
each section, the flights with occupancies (i.e. number of passengers divided by the number of seats) of less 
than the specified amount in the aforementioned TIS were removed from the analysis as not applicable.  
Thus, all that remains in the first section of 34 to 85 seat flights are those flights with 70% to 100% 
occupancy; all that remains in the second section of 128 to 215 seat flights are those flights with 60% to 
100% occupancy; and finally, all that remains in the third section of 350 seat flights are those flights with 50% 
to 100% occupancy.  The sections of flights were split up into 5% intervals.  The amount of 5% was thought 
to be a good value, as to split up the sections into several, yet still manageable for analysis, intervals.  The 
number of flights within each interval was found.  Tables follow on the data: 
 
 
 
 
 
 
                                                      
16 In fact, our empirical 1γ  and 1−γ  are rather close to 0.606.  This suggests that our selection of τ  and µ  was either 
well informed or merely providential.  For the much touted data, Appendix D 
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Table 7 - Section 1: 
Intervals (% Occupancy): Frequency:
70% -> 75% 62
75% -> 80% 50
80% -> 85% 55
85% -> 90% 56
90% -> 95% 71
95% ->100% 113

  
Table 8 - Section 2: 
Intervals (% Occupancy) Frequency
60% -> 65% 166
65% -> 70% 150
70% -> 75% 151
75% -> 80% 146
80% -> 85% 138
85% -> 90% 184
90% -> 95% 162
95% ->100% 298

 
 
 
Table 9 - Section 3: 
Intervals (% Occupancy): Frequency:
50% -> 55% 2
55% -> 60% 2
60% -> 65% 2
65% -> 70% 0
70% -> 75% 0
75% -> 80% 1
80% -> 85% 1
85% -> 90% 0
90% -> 95% 0
95% ->100% 2

 
As one can clearly tell, the amount of flights with 350 seats is not high enough to extrapolate any 

generalized statement on how many seats will be filled on any given flight.  So, we analyzed only the 
frequency distributions for the first two sections.  The bar graphs created from the data above follow: 
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We thus generalize that the distribution is fairly linear up to the last interval of 95% to 100%, where 

the number of flights is around twice the number of flights in any previous interval.  To return to the task at 
hand, the purpose of these discoveries is to be able to find the percentage of seats filled on a flight, so as to 
determine the number of bags on that flight, and eventually ascertain the number of machines needed to 
process those bags.  Based on this data, we took the sum of the mean percentage values of each interval, 
added in an extra 97.5% (since there are twice the amount of flights during the interval of 95% -> 100%, this 
interval should be weighted twice as much).  This sum is then divided by the quantity of the number of 
intervals plus 1, to obtain the average percentage value (the added “1” is due to the extra 97.5% added).  This 
value is then used to determine the average number of bags per flight, etc. 
 We will now show how this is implemented into the three sections.  The means of the intervals for 
the first section are: 72.5%, 77.5%, 82.5%, 87.5%, 92.5%, 97.5%, and then another 97.5%.  The average of 
these values is about 86.79%.  This number is then used for the average percentage of seats filled on a flight 
with 34 to 85 seats. 
 The means of the intervals for the second section are: 62.5%, 67.5%, in addition to the means of the 
intervals found in the first section.  The average of these values is about 81.94%.  This number is then used 
for the average percentage of seats filled on a flight with 128 to 215 seats. 
 Although we do not have good data on the flights with 350 seats, we can extrapolate and use the 
methods we used in the previous two sections.  We thus assume that the distribution of seats filled on a 350-
seat flight is fairly linear between 50% and 95% occupancy, with around twice the number of flights in the 
interval between 95% and 100% occupancy.  Thus, the means of the intervals for the third section are: 52.5%, 
57.5%, in addition to the means of the intervals found in the second section.  The average of these values is 
about 77.05%.  This number is then used for the average percentage of seats filled on a flight with 350 seats. 
 

10.4 Appendix D  
Methods of Discovery of Distribution of Flights within a Random Day of a Random Month of a 

Major City, spaced out among Hour-Long Intervals 
Data from: (http://transtats.bts.gov/DL_SelectFields.asp?Table_ID=236) 

 
Data on these flights was taken from “On-Time Performance” table in the “Airline On-Time 

Performance Data” database of the Intermodal Transportation Database.  The data consists of all flights 
originating in Georgia in January of 2002.  The data was sorted according to the date of flight, and then the 
departure time block (in hour-long intervals).  The data was reduced to just flights originating in Atlanta, 
Georgia, so as to get specific data for one major airport.  The final reduction was to a random day in January 
of 2002, in this case we used January 24th, and then confirmed our findings with the data from January 12th.  
The numbers were so close to identical that we assumed a certain regularity of flight schedules, which 
coincided with our personal flying experiences.  Graphing the flights per hour yields the following: 
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As the graph shows, there are several pronounced peaks, with the greatest peak being from 8-9 A.M.  
Focusing on this hour, we get the following values for γ : 
 

Table 10 
 

Hour block Flights γ  Hour block Flights γ  

6-7 am 23 0.32 3-4 pm 35 0.49 
7-8 am 11 0.15 4-5 pm 36 0.51 
8-9 am 71 1.00 5-6 pm 60 0.85 
9-10 am 32 0.45 6-7 pm 31 0.44 
10-11 am 36 0.51 7-8 pm 29 0.41 

11 am-noon 58 0.82 8-9 pm 54 0.76 
12-1 pm 33 0.46 9-10 pm 31 0.44 
1-2 pm 24 0.34 10-11 pm 20 0.28 
2-3 pm 54 0.76 11 pm-12 am 7 0.10 

 
 
 
 
 
 
 

  
 

Thus, the γ  values around the peak are lower than our accepted 0.606.  Even if the 5-6 P.M. hour is 

chosen as the peak, as it is a relative one, the neighboring γ  values are right around .60, though not over.  
The relative peak hours could, if high enough and close enough, have an effect as well.  However, assuming 
8-9 A.M. as the peak again, we calculated that no relative peak is sufficient to affect the peak hour.  Thus, we 
will proceed with assuming the irrelevance of other periods for now.  In the last part of Task 1, we will 
consider other γ  values and their possible implications on τ .   
 
10.5 Appendix E 

Computer Program Written Based on Algorithm to Distribute Flights In a Period of One Hour 
(Written in C++, with the g++ Compiler) 

 
(Note: For this program, interval 0 refers to :00->:10 (of the hour), interval 1 refers to :10->:19, interval 2 
refers to :20->:29, interval 3 refers to :30->:39, interval 4 refers to :40->:49, and interval 5 refers to :50->:59.) 
 
#include <iostream> 
int maxTimeInterval(float interval[]); //finds the maximum number in interval[] and  
                                        //returns the index 
double maxVal(double array[], int n); //returns the maximum value in given array 
void convert(double array[], int n); //converts flights from having number of seats  

        //available to average number of passengers on flight 
int main() 
{ 
        int n; //number of flights 
        cout << "Enter total number of flights to be distributed: "; 
        cin >> n; 
        double flights[n]; //array for database of flights 
        cout << "Enter the number of people on each of the " << n << " flights:\n"; 
        for(int i=0; i<n; i++) 
                cin >> flights[i]; //get number of people on each of the n flights 
        cout << "...thank you, please drive through to the next window\n"; 
 
        convert(flights,n); //converts flights from having number of seats available to  

 //average number of passengers on flight 
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        int p=0; //total number of people on all flights 
        for(int j=0; j<n; j++) 
                p += int(flights[j]); //add up number of people on each flights 
 
        float max10 = float(p)/6.0; //maximum number of people in each 10 minute interval 
 
        float interval[6]; //actual number of people in each interval 
        for(int k=0; k<6; k++) 
                interval[k] = max10; //put max10 in each component of array interval[] 
 
        //cout << "n: " << n << "\np: " << p << "\nmax10: " << max10 << '\n'; 
 
        int numFlights[6]; //number of flights in each interval 
        for(int c=0; c<6; c++) 
                numFlights[c] = 0; 
 
        double timeInt0[n]; //flights in each time interval... 
        double timeInt1[n]; 
        double timeInt2[n]; 
        double timeInt3[n]; 
        double timeInt4[n]; 
        double timeInt5[n]; 
 
        double value; 
        for(int a=0; a<n; a++) 
        { 
                value = maxVal(flights,n);  //gets the maximum value in flights[] 
                switch( maxTimeInterval(interval) ) //determines which time interval to put  
                                                        //value in, by finding out the maximum        
                                                        //value of seats left in any interval 
                { 
                        case(0): 
                                numFlights[0]++; //increase number of flights in interval 0 
                                interval[0] = interval[0] - value; 
                                timeInt0[ numFlights[0] - 1 ] = value; 
                                break; 
                        case(1): 
                                numFlights[1]++; //increase number of flights in interval 1 
                                interval[1] = interval[1] - value; 
                                timeInt1[ numFlights[1] - 1] = value; 
                                break; 
                        case(2): 
                                numFlights[2]++; //increase number of flights in interval 2 
                                interval[2] = interval[2] - value; 
                                timeInt2[ numFlights[2] - 1] = value; 
                                break; 
                        case(3): 
                                numFlights[3]++; //increase number of flights in interval 3 
                                interval[3] = interval[3] - value; 
                                timeInt3[ numFlights[3] - 1] = value; 
                                break; 
                        case(4): 
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                                numFlights[4]++; //increase number of flights in interval 4 
                                interval[4] = interval[4] - value; 
                                timeInt4[ numFlights[4] - 1] = value; 
                                break; 
                        case(5): //increase number of flights in interval 5 
                                numFlights[5]++; 
                                interval[5] = interval[5] - value; 
                                timeInt5[ numFlights[5] - 1] = value; 
                                break; 
                        default: 
                                cout << "something is wrong with the switch statement\n"; 
                } 
        } 
 
//outputs the distributed intervals onto the screen 
        double tempSum = 0; 
        cout << "Time Interval 0, :00->:09...\n"; 
        for(int b=0; b<numFlights[0]; b++) 
        { 
                tempSum += timeInt0[b]; 
                cout << timeInt0[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 0 is: " << numFlights[0] << "\n"; 
        cout << "Total # of Average numbers of seats filled for Time Interval 0 is: " 

   << tempSum << "\n\n"; 
 
        tempSum = 0; 
        cout << "\nTime Interval 1, :10->:19...\n"; 
        for(int b=0; b<numFlights[1]; b++) 
        { 
                tempSum += timeInt1[b]; 
                cout << timeInt1[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 1 is: " << numFlights[1] << "\n"; 
        cout << "Total # of Average numbers of seats filled for Time Interval 1 is: " 

   << tempSum << "\n\n"; 
 
        tempSum = 0; 
        cout << "\nTime Interval 2, :20->:29...\n"; 
        for(int b=0; b<numFlights[2]; b++) 
        { 
                tempSum += timeInt2[b]; 
                cout << timeInt2[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 2 is: " << numFlights[2] << "\n"; 
        cout << "Total # of Average numbers of seats filled for time Interval 2 is: " 

   << tempSum << "\n\n"; 
 
        tempSum = 0; 
        cout << "\nTime Interval 3, :30->:39...\n"; 
        for(int b=0; b<numFlights[3]; b++) 
        { 
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                tempSum += timeInt3[b]; 
                cout << timeInt3[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 3 is: " << numFlights[3] << "\n"; 
        cout << "Total # of Average numbers of seats filled for Time Interval 3 is: " 

   << tempSum << "\n\n"; 
 
        tempSum = 0; 
        cout << "\nTime Interval 4, :40->:49...\n"; 
        for(int b=0; b<numFlights[4]; b++) 
        { 
                tempSum += timeInt4[b]; 
                cout << timeInt4[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 4 is: " << numFlights[4] << "\n"; 
        cout << "Total # of Average numbers of seats filled for Time Interval 4 is: "  

   << tempSum << "\n\n"; 
 
        tempSum = 0; 
        cout << "\nTime Interval 5, :50->:59...\n"; 
        for(int b=0; b<numFlights[5]; b++) 
        { 
                tempSum += timeInt5[b]; 
                cout << timeInt5[b] << '\n'; 
        } 
        cout << "Total # of flights in Time Interval 5 is: " << numFlights[5] << "\n"; 
        cout << "Total # of Average numbers of seats filled for Time Interval 5 is: "  

   << tempSum << "\n\n"; 
         
        return 0; 
}//end of main() 
 
int maxTimeInterval(float interval[]) //finds the maximum number in interval[] and returns the index 
{ 
        float value = -10000; 
        int index; 
        for(int i=0; i<6; i++) 
        { 
                if(interval[i] > value) 
                { 
                        value = interval[i]; 
                        index = i; 
                } 
        } 
        return index; 
} 
double maxVal(double array[], int n) //returns the maximum value in given array  
{ 
        double value = 0; 
        int index; 
 
        for(int z=0; z<n; z++) 
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                if(array[z] > value) 
                { 
                        value = array[z]; 
                        index = z; 
                } 
 
        array[index] = 0; 
        return value; 
} 
 
void convert(double array[], int n) //converts flights from having number of seats available to average 
number of passengers on flight 
{ 
        for(int d=0; d<n; d++) 
        { 
                if(array[d] >= 34 && array[d] <= 85) //flights with seats from 34->85 
                        array[d] *= 0.8679; //average percentage of seats filled for this section 
                else if(array[d] >= 128 && array[d] <=215) //flights with seats from 128->215 
                        array[d] *= 0.8194; //average percentage of seats filled for this section 
                else if(array[d] = 350) //flights with 350 seats 
                        array[d] *= 0.7705; //average percentage of seats filled for this section 
                else 
                        cout << "sorry, we do not have data for such a flight. thanks, y'all come” 

        << “ back now, ya hear?\n"; 
        } 
        return; 
} 
 
SAMPLE OUTPUT for program 
Sample Data: Airport A during Peak Hour.  If number of flights entered is 46, and flights are entered such as 
appear in the Technical Information Sheet (TIS) of the problem description, then the following is the output: 
 
Enter total number of flights to be distributed: 46 
Enter the number of people on each of the 46 flights: 
[flight data on Airport A during peak hour entered here…] 
...thank you, please drive through to the next window 
Time Interval 0, :00->:09... 
269.675 
116.355 
116.355 
116.355 
73.7715 
29.5086 
29.5086 
Total # of flights in Time Interval 0 is: 7 
Total # of Average numbers of seats filled for Time Interval 0 is: 751.528 
 
 
Time Interval 1, :10->:19... 
176.171 
116.355 
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116.355 
116.355 
104.883 
39.9234 
29.5086 
29.5086 
Total # of flights in Time Interval 1 is: 8 
Total # of Average numbers of seats filled for Time Interval 1 is: 729.059 
 
 
Time Interval 2, :20->:29... 
158.964 
158.964 
116.355 
116.355 
104.883 
39.9234 
29.5086 
29.5086 
Total # of flights in Time Interval 2 is: 8 
Total # of Average numbers of seats filled for time Interval 2 is: 754.461 
 
 
Time Interval 3, :30->:39... 
158.964 
116.355 
116.355 
116.355 
116.355 
73.7715 
29.5086 
Total # of flights in Time Interval 3 is: 7 
Total # of Average numbers of seats filled for Time Interval 3 is: 727.663 
 
 
Time Interval 4, :40->:49... 
158.964 
116.355 
116.355 
116.355 
116.355 
39.9234 
39.9234 
29.5086 
Total # of flights in Time Interval 4 is: 8 
Total # of Average numbers of seats filled for Time Interval 4 is: 733.738 
 
 
Time Interval 5, :50->:59... 
158.964 
116.355 
116.355 
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116.355 
104.883 
73.7715 
29.5086 
29.5086 
Total # of flights in Time Interval 5 is: 8 
Total # of Average numbers of seats filled for Time Interval 5 is: 745.7 
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