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Abstract 
 
 Queuing systems currently in place in amusement parks are inherently deficient.  
They frustrate park attendees, who have a list of complaints.  We propose a superior queuing 
system, QuickPass.  Through our mathematical analysis, we optimize the queuing system 
given a set of constraints, and all parties involved benefit.  We find that placing a virtual gap 
between QuickPass time windows allows the greatest number of QuickPasses to be issued 
during a given day, which yields the lowest aggregate wait time.  In addition, our model 
addresses user complaints, increasing overall guest satisfaction.  Furthermore, our model will 
generate a significant increase in park revenue. 
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1. Introduction 
1.1 Raison d’Être: Amusement Parks 
 
 While waiting in a long line for a new, extreme roller coaster, standing in the 
oppressive summer heat, amidst a hoard of children with stuffed animals larger than 
themselves, the writers of this paper once posed the rhetorical question, Why would anyone 
want to go to an amusement park?  Certainly, numerous reasons exist.  Maybe you love roller 
coasters.  Perhaps you go to a theme park or resort, such as Walt Disney World®, for a 
short vacation.  Maybe you want to take your wife and 2.4 children out for a day of 
diversion.  Whatever the particular reason, the common thread among these is that you want 
to experience pleasure and/or relaxation.  You want to enjoy yourself.  Perhaps your life is 
filled with unpleasantries, both grave and trifling.  If you’re Lester Burnham from American 
Beauty, you “feel like [you’ve] been in a coma for the past twenty years. And [you’re] just now 
waking up.”  That’s what an amusement park can be – an escape from the ordinary. 
 Thus, the best amusement park in theory, in contrast with Plato’s best city in speech, 
produces the greatest enjoyment possible for its guests.  This can be viewed as enhancing the 
pleasurable aspects of the park and reducing the undesirable elements.  One such 
undesirable aspect of an amusement park experience is the long lines.  Amusement parks are 
experimenting with various forms of queuing systems that allow riders to take a ticket that 
instructs them to return at a later time, at which point they can board the ride with little or 
no time spent in line.  In this paper, we refer to such a queuing system as QuickPass (QP).  
QuickPasses issued from a kiosk include, at the least, a return time, which is the time at 
which the QP holder should return to ride.  QPs may contain other information, as we will 
later show.   
 There are several potential models for a queuing system; however, some do not 
increase the enjoyment of the guest.  One such model would be a stack-based approach; in 
other words, last-in-first-out (LIFO).  With this model, the first people that get in line will be 
the last ones to get on the ride.  The last people to enter the line would be the first ones to 
ride.  Overall, the total aggregate wait time is the same as a queue-based model (first-in-first-
out; FIFO).  However, we can all agree that this model is absurd.  Even though the wait time 
for the last people in line will be tiny, and the wait time for the folks in the middle will be 
about the same, the problem lies with the first people to enter the line – they won’t ride until 
the line empties out!  This brings up an interesting point: this LIFO system would most 
likely cause the situation to occur where there are no lines!  However, not many people 
would ride the ride, park attendance would diminish, and the park would lose lots of money.  
Without loss of generality (WLOG), we can throw the stack-based approach out the window 
with the daily garbage. 
 For an in-depth look at a variety of models that we have discounted, see below in 
Section 5, The Model, Part I under constraints.  There, we discuss varying extreme values of 
how many QP’s to issue per window, a “train schedule”-like model, and more.  These 
models are rejected precisely because they do not enhance the enjoyment of park attendees, 
which we determine to be a central goal of the QuickPass system.  
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1.2 Complaints 
While minimizing time spent waiting in line is important, it is not the only concern in 

maximizing people’s enjoyment of the amusement park.  A QuickPass system will impact the 
park attendees’ senses of fairness and just desserts.  Thus, in order to understand how best 
to optimize a person’s amusement park experience, we considered it important to address 
various complaints that guests have offered about QuickPass-like systems already in place.  
On the allearsnet.com website, Julie offered these comments about FastPass, a system that 
Disneyland® has implemented: 

We have mixed feelings about the FastPass system. When you 
get to a ride that has FastPass and look at the two clocks remember 
that the standby line time is an ESTIMATE of how much time you 
will need to wait to ride. We found that on some rides the time was 
way off and the line was much shorter that the clock said. We also 
found that on some rides the standby time estimate was too short 
because a lot of fast pass riders came in and their line backed up. The 
CM let the FastPass riders on and left us standing in line even longer 
when this happened. It was frustrating to be in the standby line for 
longer than the time estimate said on the clock and have the FastPass 
riders cut in front of you. FastPass made it hard to predict how long 
the wait for a ride would REALLY be.  

We found that FastPass changed the way we toured the 
parks. We went to the ride in each park that we really wanted first. If 
the stand by line was not very long we would get a FastPass first and 
then get in the standby line and ride it. By the time we got through 
riding it would be time for our FastPass. This let us ride 2 times in a 
row early in the day. FastPass did not work as well for us as the parks 
got more crowded. We would get a FastPass when we could for a 
ride, but the return times were usually a couple hours away. We 
found ourselves waiting around for a FastPass time to come up 
rather than moving to a different area of the park or walking more to 
go back to a ride that we were holding a FastPass for. I'm not sure if 
this system is worth it. Maybe it was better when everyone had equal 
rights in line?�  

We will now address this guest’s complaints. 
 
1.2.1 More Accurate Estimates 

Using our system, there will always be an accurate range of waiting times on a clock 
that a guest will be able to see at the beginning of the regular line.  In our model, the 
accuracy of this range depends on being able to track how many people are in the line at any 
given time, which is not difficult to ascertain.  As a result of this improved estimation 
system, there will never be the problem of having a displayed wait time of 90 minutes when 
there’s really just 4 people in line, nor will the wait time of people in the regular line increase 
beyond the upper range of wait time listed on the clock, even if a “burst” of QuickPass 
holders show up during that time.  This will be discussed in Section 7, The Model, Part II. 

 

                                                 
�  “FastPass.”  AllEarsNet. 
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1.2.2 QuickPass holders will never fill a ride 
Additionally, every line must always be moving.  A person standing in the front of 

the regular line, which is not moving, while guests in a QuickPass line continue to cut in 
front of him, will not be a happy camper.  In our model, whenever a horde of QuickPass 
riders show up, the proportion of QuickPass riders accepted on each ride will increase to 
prevent their line from backing up.  However, we will still allow a certain percentage of 
people in the regular line on each ride so that both lines continue to move.  Thus, although 
the rate at which the regular line moves will slow during a QuickPass “burst” of riders, 
overall it will reduce the total waiting time that everyone experiences.  After the group of 
QuickPass riders is taken care of, the proportion of guests in the regular line who get to ride 
will increase again.  We will discuss this constraint in Section 5. 

 
1.2.3 Maximum Allowable Wait Time for QuickPass Holders 

In our model, we allow the amusement park to choose a maximum acceptable 
waiting time for people in the QuickPass line.  The number of QuickPasses and the duration 
for the time windows for each ride are based on this maximum time in such a way that a 
person in the back of the QuickPass line will never spend more than the set maximum time 
in line.  This is very important, as QP holders will not tolerate much of a wait when they 
return at their scheduled time, even if their total time spent in line is far less than it would be 
otherwise.  A QuickPass is something of a contract, promising its holder little or no wait 
time in line, in exchange for agreeing to return at a later time.  The inconvenience of 
returning later is rewarded by a greatly reduced wait, and if the park does not fulfill its 
promise of a short wait for QP holders, it is effectively reneging on its contract.  The 
QuickPass holder will feel that he is being deprived of something he rightly deserves, even 
though in terms of time spent waiting in line, he is better off. 

 
1.2.4 QuickPass Return Times & Available QuickPass Windows 

Because there are only a limited number of QuickPasses that can be allocated in each 
window, there is no choice but to give QuickPasses scheduled later and later in the day as 
more people ask for them.  So if someone really wants to get on a particular ride, he has two 
choices: they can go ahead and wait in the regular line, which will take no longer than it 
would if the QuickPass system didn’t exist, or they can take a QuickPass for later on in the 
day and enjoy other aspects of the amusement park in the meantime.  It is up to each guest 
to determine if a QuickPass provides more benefit by decreasing the amount of time spent 
waiting in line, or more cost by having an imposed schedule to follow. 

One aspect of our model that will decrease the rigidity of a guest’s schedule is the 
capability to choose which open time window for which he would like the QuickPass.  So, 
for example, if he wanted to ride as soon as possible, he could still choose the next available 
time window, but if he wanted to visit a different area of the park for a period of time, he 
could choose a later time and avoid having to stay in his current area waiting for his window 
to open up. 

  
1.2.5 All Men are Created Equal  �

                                                

One thing that guests must keep in mind is that the QuickPass system we are using is 
minimizing the aggregate wait time.  Using our model, nobody is ever worse off than they 
would be if the system didn’t exist, while the majority of people benefit.  To someone 

 
�  Declaration of Independence, 1776. 
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standing in the regular line watching many QuickPass riders pass in front of them, this may 
seem hard to accept.  However, these passes are available to everyone in the park, so that 
same disgruntled guest can later acquire a QuickPass for himself and end up on the opposite 
side of that situation.  Furthermore, we will demonstrate that our QuickPass system is Pareto 
optimal, i.e. that everyone is at least as well off, and some are better off. 
 
1.2.6 Riding Back-to-Back 

One option this QuickPass system provides is the capability to ride a very popular 
ride two times in quick succession, which Julie seemed to enjoy.  Once obtaining a 
QuickPass with a given return time, a guest’s free time can be spent standing in line for the 
ride anyway.  This way, some period of time after the guest gets on the ride through the 
regular line, his time window for the QuickPass line will open up.  By doing this, his 
presence in the regular line will cause everyone behind him to wait longer, since the whole 
idea of the QuickPass is that the people who have one will not be in the line until their 
window opens.  That said, many guests enjoy this feature of QuickPass systems, and since 
they are available to everyone, anybody can double up on their favorite ride.  Our model 
allows for this possibility since we require that the return time for a QuickPass is always at 
least as long as the current wait time in the regular line. 
 

The problem we face is, on the one hand, to improve the actual operation of the 
QuickPass system and, on the other hand, to increase the enjoyment of folks attending the 
park.  Furthermore, we will consider the potential for the amusement park’s financial 
through an appropriately designed QuickPass system.  Reduced to its simplest elements, our 
task is to maximize enjoyment and revenue, given a set of constraints.  Our model will do 
just that – and it is legal in all 50 states.  Now, please sit back, keep all hands and loose 
objects inside the car at all times, and enjoy the ride as we introduce the mathematics behind 
our model. 
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2. General Assumptions 
The following have been assumed unless temporarily revoked elsewhere in the paper. 
 
We assume that the greatest good for the individual is as important as the greatest good for 
the community. 
 
We assume that the given ride will always be running at full capacity.  This is reasonable to 
assume since the QuickPass system is designed for rides that are in high demand.  Thus, 
there should be enough people to fill the ride every time. 
 
We assume a normal, functioning operating day (i.e., the ride never breaks down). 
 
We assume that the rain in Spain falls mainly on the plain (except when it falls in Hartford 
Haverford, or Hampshire).   
 
We assume that a QuickPass Kiosk will be able to obtain data, such as the current time, the 
current number of people standing in a given line, etc. 
 
We assume that the amusement park will never want to issue a QuickPass for a window of 
time that is sooner than the current wait time for the regular line. 
 
In our system, we define QuickPass windows as non-overlapping (e.g., if one window is 
from 4:30-5:15pm, a window from 5-5:45pm will not exist). 
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3. Notation 
The variables used in this paper are defined below for the benefit of the reader.  They are ordered 
alphabetically, more or less. 
 

curδ  = Current time  

dayδ  = Time of day that the return time specifies, retcurday δτδ +=  

reth  = “return time,” i.e. length of time from the current time until a QuickPass tells a rider 
to return (hours) 
k = Capacity of the ride (people/ride) 
λ  = Wait time for the regular line (minutes) 

dayN  = Total number of QuickPasses issued during one day 

fastN  = Number of people from the regular line boarding the ride at the fastest possible rate 

lineN  = Number of people in the regular line  

QPN  = Maximum number of QuickPasses to be issued in one window 

regN  = Number of riders admitted from the regular line during one window 

passedregN = Number of people from the regular line who have ridden during the current 
window 

slowN  = Number of people from the regular line boarding the ride at the slowest possible 
rate 

QPregtot NNN +=  = Capacity of the ride during one window 

avgφ  = Average proportion of QuickPass riders allowed per ride, 10 <≤ φ  

maxφ  = Maximum proportion of QuickPass riders allowed per ride, 0 1max <≤ φ  
ψ = Depreciation constant of how many QP holders will not show up during a window that 
occurs later in the day 
r = Inverse of the frequency of the ride (minutes/ride) 

curτ  = Current time, converted to minutes 

dayτ  = Total time the park is open (minutes) 

gτ  = Length of the virtual gap (minutes) 

lτ  = Maximum acceptable wait time for people in the QuickPass line (minutes) 

openτ  = Amusement park opening time, converted to minutes 
τW  = Length of window for QuickPasses (minutes) 
W = Total number of windows in a given day 
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4. Equations 
The following are the principal equations used in this paper.  All derivations, explanations, clarifications, 
elucidations, and illuminations can be found within the succeeding pages. 
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5. The Model, Part I 
 
 This section will derive the fundamental ideas behind the first aspect of our model.  
The QuickPass system is based on the idea of giving park attendees the choice between 
waiting in line for a ride now or returning later and waiting in a shorter line.  For those who 
choose to return later, a kiosk will issue them a QuickPass, designating a time window in the 
future during which they can return to ride.  They enter through a separate, much shorter 
line and ride. 
 First, we will derive the basic equations for the number of QuickPass users and 
regular users that a ride can accommodate during a window, then we will discuss realistic 
constraints which must be placed on our variables.  Next we consider the possibility of 
adding a gap between the scheduled windows during the day, first discussing an example and 
then generalizing our model to include this gap time.  Finally, we will discuss how to 
maximize the total number of QuickPasses handed out during a day, which, as we will see 
later, will minimize the aggregate wait time of the guests in the park.  In effect, we approach 
this problem as constrained optimization. 
 
5.1 Derivation of   and  QPN regN

Beginning with the capacity of each individual ride k (people/ride) and dividing it by 
the duration of each ride r (minutes per ride), we obtain the number of people per minute 
that the ride can handle:  

r
k

 

If we multiply this by the length of the QuickPass window, Wτ , we will obtain the total 
capacity  of the ride for that window: totN

    Wtot r
kN τ=      (eq. 1) 

 
Multiplying  by the total number of windows throughout the day, called W , let’s 

say, will yield the daily capacity of the ride, which we must strive to fill to the fullest. 
totN

 
Now, if we simply multiply   by totN avgφ , the average proportion of QuickPass users 

let on each ride, then we will obtain the number of QuickPasses to issue during one window: 

W
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QP r
k

N τ
φ

=     (eq. 2) 

Similarly, if we multiply   by totN avgφ−1 , we will obtain , the number of people in the 
regular line that a ride can accept during a window: 
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5.1.1 Derivation of Day-long formulas 
Let us call the total number of QuickPasses issued during a day , and the total 

time the park is open 
dayN

dayτ .  Then the total time the park is open equals the total number of 
windows, W, times the length of each window: 

Wday Wττ =  
 
Similarly, the total number of QuickPasses issued during the day equals the number issued 
per window times the number of windows: 

QPday WNN =  
 
5.2 Constraints 
5.2.1 Full capacity 

Since the rides using the QP system are typically popular rides with high traffic and 
long lines, operating the machines at full capacity, or as full as humanly possible, should be a 
goal.  This will allow as many park attendees as possible to ride the ride, thus increasing 
overall customer satisfaction.   
 
5.2.2 Length of the Window: Wτ  

The length of the window must have an established minimum value related to park 
size and inconvenience to riders.  Wτ  must be long enough so that people have sufficient 
time to cross from the other side of the amusement park at their leisure.  If Wτ  is too small, 
riders will be under pressure to return at a specific time, which takes away from their 
enjoyment at the park.  Park attendees should be able to follow a flexible vacation schedule, 
not a regimented work agenda.   
 
5.2.3 Average Percentage of QuickPasses to Issue: avgφ  

In first approaching the problem of finding the optimal percentage of QuickPasses 
to issue, we consider the extremes.  First, what if avgφ  = 0?  This is the status quo ante, that is, 
there is no QP system in place.  As we can show that a QP system can reduce aggregate wait 
time, we know that the optimal avgφ  is greater than 0.   

On the other hand, avgφ  = 1 means that every seat on every ride is reserved for QP 
users.  If it worked ideally, there would be no waiting in line: all riders would show up for 
their designated time and ride immediately.  It follows that at avgφ  = 1, there should be no 
regular line.  By definition, all seats on all rides for the day are assigned to someone with a 
QP; thus, there can be no regular line.  Anyone who gets on the ride and does not hold a QP 
will deprive a QP holder of a seat.   

Aside from the improbability of perfectly punctual humans, letting avgφ  = 1 has two 
consequences, both of which contradict one of the two constraints listed above.  One is that, 
in order to ensure the fullest capacity of the ride, we would have to set Wτ  = r.  This means 
that every QP user is issued a ticket for a specific ride, as in a precise train schedule, and it 
clearly contradicts the restriction on Wτ .  It would make navigating an amusement park even 
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more stressful than it already can be (due to large crowds, screaming children, people 
dressed as giant cartoon characters, the sensual, yet pure, beauty of the unattainable Snow 
White, etc.).   

Even setting Wτ  = r, however, would not ensure that the ride is full every time.  
What if someone misses their QP time?  Under lower values of avgφ , the empty seats would 
be filled by people from the regular line, but we have no regular line at avgφ  = 1.  If a de 
facto regular line forms, people could be admitted from it, but there is the risk that QP 
holders will return and be unable to ride.  Wait times for the QP line will rise, some QP 
holders will not get to ride despite the implicit guarantee that the QP provides.  The entire 
system will be undermined.   

Increasing Wτ  to a value acceptable within the constraint will not solve the problem 
of empty seats.  With larger values of Wτ , the chance that QP holders will miss their 
scheduled window decreases, but an even distribution of QP holders showing up to ride 
throughout is unlikely.  Empty seats will still result. 

avgφ  = 1 has other consequences as well.  Since a popular ride only has a limited daily 
capacity of people it can accommodate, only that many QPs could be given out.  At avgφ  = 
1, park attendees who arrive early could reserve seats on a ride for the whole day, while a 
family who shows up at 2:00 PM would arrive to find that there are no more QPs left, thus 
prohibiting them from enjoying the ride for the rest of the day.  Also, this would promote 
extremely long return times, scheduling the person who picks up the last QP for a popular 
ride in the morning for a time 5 minutes before closing.  This method does not seem to be a 
practical way to queue people.  The bottom line is that since we need a regular line to ensure 
a full ride whenever possible, avgφ  must be less than 1.  We will revisit avgφ  later. 
 
5.2.4 Maximum Wait Time for QuickPass Holders in Line: lτ  

The QP system is designed to reduce wait times, yet it brings with it the 
inconvenience of delayed gratification.  Thus, the wait time in the QP line, once a person has 
returned during his assigned window, must be significantly lower.  One user complaint of 
current QP-like systems is that they have still had to wait in line for a while even when using 
the QP.  To remedy this problem, we suggest setting a maximum wait time for QP users.  
This maximum wait for QP riders, lτ , should be presented as a guarantee to park attendees, 
and adhering to it – as this model ensures – will increase customer satisfaction.  

One restriction we will have to impose is that r≥lτ .  Although QP holders might 
appreciate 0=lτ , we can never guarantee that a QP user will have no wait.  Inevitably, users 
will show up while the current ride is still going, so that at least a brief wait time will be 
experienced until the next ride departs. 

Another point about lτ  is that it is one factor determining the largest possible burst 
of QP riders, meaning the maximum number of QP holders that can show up at one time.  
The last person in the QP line (who theoretically arrived at the exact same time as everyone 
else in front of him, yet ended up last in the queue) must be able to ride in lτ  minutes.   
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5.2.5 Maximum Percentage of QuickPasses to Issue: maxφ  

In order to ensure that no QuickPass user will wait longer than lτ , the proportion of 
QuickPass users let on each ride during peak hours must be allowed to increase to an upper 

limit, maxφ .  Thus, the maximum rate at which a ride can process QuickPass users is 
r

kmaxφ
.  

As a proportional constant, maxφ  cannot be greater than 1.  However, we argue that maxφ  
must be significantly less than 1.   

During a burst of QP riders, it seems that the best way to expedite the QP line 
would be to increase φ  all the way to 1.  However, one must consider the effect this has on 
the front of the regular line when the QP burst arrives.  If φ  max=1, then the front person in 
the regular line must wait there until all of the QP users have been ridden.  This would 
obviously anger the people in front of the regular line.  For example, recall part of Julie’s 
complaint mentioned earlier: 

We also found that on some rides the standby time estimate was to short 
because a lot of FastPass riders came in and their line backed up. The CM let 
the FastPass riders on and left us standing in line even longer when this 
happened. It was frustrating to be in the standby line for longer than the time 
estimate said on the clock and have the FastPass riders cut in front of you. 

Hence, we will place an upper limit on φ  less than 1 so that both lines will always be 
moving.  This will reduce frustration of users in the regular line. 
 
 
5.3 The Gap Extension 

Following from the discussion of lτ  and maxφ , we should consider what factors 
determine the largest possible burst of QP holders.  We will show that placing a virtual gap 
in between windows will reduce or eliminate the problem of bursts from consecutive 
windows overlapping.  This will allow a larger number of QPs to be issued, given the other 
constraints, and more QPs equate to less aggregate wait time. 

First, let us discuss the case when there is no gap between windows.  The worst case, 
i.e. the largest possible burst, would be if all of the QP holders from one window showed up 
at the end of the window, and then all of the QP holders for the following window showed 
up at the beginning of the window.  For example, all QP holders for windows from 8:00 to 
8:45 and 8:45 to 9:30 show up at 8:45.  In this case, the ride has lτ  to accommodate the QP 

holders from both windows, at a rate of 
r

kmaxφ
; hence,  

     lτ
φ

r
kNQP

max=     (eq. 3) 

But we already know from equation (2) that for any window, W
avg

QP r
k

N τ
φ

= , and 

since in this scenario the ride is processing all of the QuickPass users from both windows at 
once, we have  

W
avg

QP r
k

N τ
φ2

=     (eq. 4) 
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Equating equations (3) and (4) and simplifying, we find the relation: 
Wavgτφτφ 2max =l  

 
Now, let us consider what happens if we insert a virtual gap, gτ , between windows.  

This means that the QuickPass will tell riders to return to the ride during a window that is 
smaller than the actual window.  For example, for windows from 8:00 to 8:45 and 8:45 to 
9:30, the kiosk might report windows of 8:00 to 8:30 and 8:45 to 9:15, respectively.  In this 
example, a gap of 15 minutes is built in.  Note that our earlier constraint for the minimum 
time of Wτ  should really be applied to gW ττ − .  We want to allow guests enough time to 
conveniently reach a ride within the window they see on the QuickPass (for the example 
above, 30 minutes).  If we set lττ =g =15 minutes, even if all QP holders show up at the 
end of their reported window, they will all be able to ride before the next window starts.  
Thus, there can be no compounding of QP bursts between windows.  Now our expression 
for  will only need to account for one window instead of two: QPN

W
avg

QP r
k

N τ
φ

=     (eq. 5) 

Again, equating (3) and (5) we now get the relation: 
Wavgτφτφ =lmax  

Hence, there seems to be a dependence among these variables on the gap time.  
Suppose that we are given two windows of duration Wτ , each with a gap of gτ  after it.  
Also, suppose that all of the QuickPass users in the first window show up at the end of their 
allowed time, and after the gap, all of the QuickPass users from the second window 
immediately show up as well.  The ratio of QuickPass users who will carry over to the 

second window will be 
l

l

τ
ττ g−

, so the total number of QuickPass users who must ride in 

the second window can be written more generally as: 

W
avgg

QP r
k

N τ
φ

τ
ττ

)1(
l

l −+=  

   W
avgg

QP r
k

N τ
φ

τ
ττ

)
2

(
l

l −=     (eq. 6) 

 
Call this new proportion in front υ : 

  
l

l

τ
ττ

υ g−
=

2
     (eq. 7) 

 
Fortunately, we have already established that 0≠lτ .  We don’t want any pesky singularities 
wandering around our amusement parks. 
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5.3.1 Restrictions on gτ  
It seems appropriate here to take an aside and establish some constraints on values 

that gτ  can take.  The length of this gap, if it exists, should at least be as long as the duration 
of our ride, r, because otherwise it will not reduce the wait time of any QuickPass holders 
who arrive at the end of a window.  For example, suppose the duration of a ride is 3 
minutes.  If the gap time is 1 minute and 20 people show up at the end of an window, then 
after the gap is over, they will still be waiting to board the ride when the QuickPass users for 
the next window arrive.  More generally, a gap will be most beneficial if it is a multiple of the 
duration of the ride.  Hence, we will say that: 

,...2,1,0: == ccrgτ  
Furthermore, it does not make sense to allow the gap time to be greater than the 

maximum allowable wait time, lτ .  The purpose of the gap is to allow some of the 
QuickPass users who arrive late in a window to be processed before the next window opens 
up.  So if a gap lasts longer than the greatest possible wait time, there will be time where no 
QuickPass users will be able to show up, and this is inefficient because it reduces the total 
number of QuickPass users that the ride will accommodate in a day, which we are trying to 
maximize.  Thus, lττ ≤g . 
   
 
Returning to our expressions (3) and (6) for  in terms of QPN avgφ  and maxφ , we equate them 
and find a general relation among our variables: 

          Wavgτυφτφ =lmax     (eq. 8) 
This lets us create two equivalent expressions for : QPN
 

lτ
φ

υ
τ

φ
r

k
r

k
N W

avg
QP

max1
==     (eq. 9) 

 
Let us finally return to and show some alternative ways of representing it: regN

W
avg

reg r
k

N τ
φ )1( −

=  

W
avg

Wreg r
k

r
kN τ

φ
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QPWreg N
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k
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kN Wreg
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−=     (eq. 10) 

Note that these derivations are consistent, since if we add  to both sides of this last 
equation, we recover the formula for : 

QPN

totN

WQPregtot r
kNNN τ=+=  
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5.4 Maximization of  dayN
Given our derived equations (7) and (8) 

Wavgτυφτφ =lmax  

where 
l

l

τ
ττ

υ g−
=

2
, 

we can substitute υ  into the first equation as follows: 

Wavg
g τφ

τ
ττ

τφ )
2

(max
l

l

l

−
=  

         Wavg
g

τφ
ττ
τφ

=
−l

l

2

2
max     (eq. 11) 

 
First, let us explore the relationships among these different variables.  lτ  and 

maxφ will be predetermined by the amusement park, based on the convenience they want to 
confer on their guests.  The park is free to choose, within constraints, how small they want 
the maximum wait time, lτ , for QuickPass users to be, as well as what proportion of regular 
users, 1 maxφ−

g

, are guaranteed to get on each ride so that people at the front of the regular 
line do not become frustrated.  These variables being fixed, we are left with a relationship 
among τ , Wτ , and avgφ .  Recall the first part of equation (9) for the number of 
QuickPasses to be given out during one window: 

WavgQP r
kN τφ=  

For a given ride, k and r will be fixed, so the total number to QuickPasses handed out will be 
fully dependent on the product Wavgτφ , which also appears above.  What we want is to 
maximize the number of QuickPasses given out during the day under our constraints.  
Doing so will decrease the aggregate wait time, which has several positive effects.  Park 
attendees will spend less time waiting in line, which should increase the enjoyment that they 
experience at the amusement park.  For park owners, the decrease in aggregate wait time will 
increase the amount of free time that park guests have, equating to more spending time from 
the park’s perspective. 

Recall our formulas earlier in the derivation for the total number of QuickPasses 
issued during a day , the total time the park is open dayN dayτ , and the total number of 
windows throughout the day W : 

Wday Wττ =  
Solving for W we have: 

W

dayW
τ
τ

=  

We also recall that: 
QPday WNN =  
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We want to maximize , so let us plug in what we know and find out what makes this 
guy tick: 

dayN

)( Wavg
W

day
day r

kN τφ
τ
τ

=  

         dayavgday r
kN τφ=     (eq. 12) 

This equation reveals several interesting points.  Increasing Wτ  allows the park to 
increase the number of QuickPasses issued per window, yet it also reduces the total number 
of windows during the day.  This equation shows that in fact, the countering forces of Wτ  
balance each other out exactly, so our maximization of  is independent of dayN Wτ .  
Everything in the above equation for  will be fixed ahead of time except for dayN avgφ .  So, 
that is the key: to maximize the number of QuickPasses to be issued during the day, maximize the average 
number of QuickPass users allowed on each ride.   

Now, let’s return to equation (11) relating gτ , Wτ , and avgφ : 

Wavg
g

τφ
ττ
τφ

=
−l

l

2

2
max  

Since we know that Wτ  will not play a role in the overall goal, and since everything else in 
this equation will held constant, we are left with the following relationship: an increase in gτ  
corresponds to an increase in avgφ , which is what we want.  So, we would like to make the 
gap time as large as possible, because doing so directly implies that more QuickPasses can be 
issued throughout the day.  Earlier, we gave evidence that the upper bound for gτ  should be 
equal to the maximum allowable wait time lτ , since a gap time larger than lτ  would waste 
potential arrival time for QP users.  Therefore, the main conclusion is that setting lττ =g  will 
maximize the number of QuickPasses that can be issued during the day, thus decreasing the aggregate wait 
time experienced by everyone in the park. 
 In the following section, we will discuss some extended examples with real numbers 
to demonstrate the conclusions found in this section: that having a QuickPass system at all is 
preferable to just using a regular line, and that having a gap between each window in a 
QuickPass system is preferable to not having a gap. 
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6. Simulated Data: Testing the Model 
6.1 Mind the Gap.  Mind the Gap.  Mind the Gap.  Mind the 
Gap. Stand clear of the doors, please.3 
 
 In this section, we will give an example that demonstrates that, subject to all of the 
constraints mentioned above, having a gap is better than not having a gap.  This will help 
fortify the algebraic conclusions drawn earlier.  Furthermore, having QuickPasses at all is 
better than not having them. 
 Before addressing the example, we should clarify what “better” means.  In terms of 
utilitarianism, one way of evaluating two states or situations against each other is to compare 
their social welfare functions, or the sum of the utilities of every individual.  There are 
several problems with doing this in the real world.  However, in this case we are comparing 
states based on their aggregate time spent in line.  Though we cannot assume that all people 
value time equally, we can make a strict utility comparison of the two states with greater 
facility since both states contain the same thing, namely time: we are not comparing Snow 
White to merely reading about Snow White. 

On the other hand, a stricter method of comparing social welfare is Pareto 
optimality.  For state A to be Pareto optimal to state B, all people must be at least as well off 
in state A as in state B, and at least one person must be better off in A than in B.  Through 
the following example, we will show that having a virtual gap between windows not only 
reduces aggregate wait time, it is Pareto optimal to not having a gap.  Both are Pareto 
optimal to the case in which no QuickPasses are issued.   

Figure 1 shows these three cases given a set of sample values for the constants.  For 
the actual numbers produced in this graph, we set the following values: Wτ  = 45, lτ  = 15, r 
= 3, k = 30, and maxφ  =  2/3.  The time period in question is two full windows, as we are 
examining the case of the largest possible burst, i.e. when all of the QP holders from the first 
window show up at the end, and all of the QP holders from the second window show up at 
the beginning.  Variables within the examples are avgφ  and the gap. In the graph, the black 
line represents individual wait times on the ride if no QuickPass system is in place.  In this 
case, 0=avgφ , and the gap is irrelevant.  The dark gray line depicts a QP system with no gap.  
Thus, 0=gτ  and, given our other values, 9/1=avgφ .  The light gray line represents a QP 
system with lττ =g , and thus 9/2=avgφ .   

Interpreting the meaning of the data points on the lines requires some explanation.  
Each diamond point represents 10 people.  Consider the black line.  There are three points 
corresponding to 0 on the y-axis, three at 3, three at 6, etc.  This means that there are 30 
people that wait 0 minutes, 30 that wait 3 minutes, 30 that wait 6 minutes, etc.  The numbers 
on the x-axis aggregate the number of people, such that 30 on the x-axis corresponds with 0, 
60 is 3, and 90 is 6.  Thus, we can say that for any value of x, there are x people with a wait 
time of y or less.  We cannot necessarily say, however, that the 90th person in line waits for 6 
minutes.  On the light and dark gray lines, QP riders are involved.  After calculating 
individual wait times (using the Queuing Computer Simulation described below), the wait 
times for regular line people and QP line people were meshed together.  In the dark gray  

                                                 
3 As heard in the London Underground. 
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Figure 1: Wait Times & Aggregate Waits for Three Different Systems 

 
line, for example, the first 30 people in the regular line ride with no wait, and the first 20 
people (according to maxφ ) in the QP burst can ride immediately as well.  Thus, over the 
course of the period, 50 people ride with no wait.  The points on the dark gray line represent 
this meshing of wait times.   

The shaded areas under the curves represent aggregate wait times.   The graph thus 
shows the logical negative correlation between the number of QuickPasses issued per 
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window and the aggregate wait time.  Put otherwise, this means that the greater the avgφ , the 
greater the reduction of aggregate time spent waiting in line.  This is intuitive: the more people who are 
guaranteed a maximum wait time of lτ , the fewer that have to wait in a longer regular line.  
Our model holds even if lτ  is greater than the wait time for the regular line.  People will 
only take QuickPasses when the regular line is long enough that the inconvenience of 
returning later is rewarded with a shorter line.  If the regular line is so short that it is less than 
the guaranteed maximum QP wait, the potential rider will simply enter the regular line and 
forego the QuickPass, all other things being equal.  Thus, QuickPasses are designed with 
long regular lines in mind.   

Note that wait times expressed in the graph are times spent waiting within this 
window, regardless of how much riders have already waited in line up to this window.  As 
we are analyzing at the margin – and because we cannot know when people will show up at 
the ride – we consider the time spent in line before this window as a sunk cost and seek to 
reduce the wait time within this window.  For simplicity in calculation, we assume that the 
regular line is effectively infinite within the scope of these two windows.  That is, there are 
always enough people in the regular line to fill all seats on a given ride not filled by QP 
holders.  Furthermore, there are more people in the regular line than can ride within the next 
two windows.  We feel that this is a safe assumption because rides using the QuickPass 
system are rides that are in high demand.  In the examples, we compare the minimized 
aggregate wait to the counterfactual case, i.e. in which there is no QuickPass system.  
Because of this comparison to the counterfactual 2-window time period, we argue that even 
if there are fewer people in the regular line than can ride within the next two windows, the 
difference in aggregate wait between the two cases will be unchanged, ceteris paribus.   

In concrete terms, what does this reduction in aggregate wait time mean in terms of 
benefits?  In our examples, area A, the time saved by a system with no gap, is 4,500 minutes, 
or 3,000 minutes per hour (since the two-window period is 90 minutes long).  Area A + B, 
the time saved by a gap system, is 7,500 minutes, or 5,000 minutes per hour.  For park 
attendees, the benefits are hard to quantify.  The increased free time will allow them to do 
things other than waste the day standing in line.  Certainly this will increase their enjoyment 
of their park experience – particularly if they have impatient young children.   

The benefits accrued to the park, on the other hand, are very quantifiable.  People 
only spend money in the park while walking around, not while standing in line.  Thus, if we 
decrease the time spent in line, we increase the time that park guests have to do other things, 
one of which could be purchasing food or souvenirs.  Thus, a QP system could directly 
increase the park’s revenue.  By using rough estimates of Walt Disney World’s® annual 
number of visitors (40 million people) and how much each visitor is likely to spend in any 
given day ($52) 4 and given the time saved waiting in line, we estimate that Walt Disney 
World® would make an additional $193 million annually using this QuickPass system with a 
gap.  This is about $77 million more than would be generated using the same QuickPass 
system without a gap.  These figures, of course, correspond to the fictitious ride we imagined 
with a daily capacity given by k and r.  Naturally, a larger ride would have a larger aggregate 
wait time, ceteris paribus, so a QuickPass system would save even more wait time, thus 
entailing a larger revenue boost for the park.   

                                                 
4 Kirsner, Scott.  “Hack the Magic.” 
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Along the same reasoning, we can easily conclude, without loss of generality, that 
London’s Underground, where one must “mind the gap,” is superior to the New York 
subway system, where there are no gaps!  They probably don’t even use a QuickPass system! 

 
 
6.2 Bursts: They Might Just Kill You…more on the 11 o’clock 
News 
 
 Using the same premises we set for the previous example for defending the gap,5 we 
now set off to assess the impact of bursts of QuickPass riders on our system.  Figure 2 is 
designed similarly to the former.  The black line again depicts individual wait times for a 
system in which no QuickPasses are issued.  The light gray line also depicts the same QP 
system as it does in the previous graph.  The dark gray line represents, like the light gray line, 
a QuickPass system with lττ =g  and 9/2=avgφ .  The difference is that instead of all QP 
holders arriving in a burst, they arrive evenly dispersed throughout the duration of the 
windows.  Note that, once leaving the x-axis, it is effectively linear.   

The graph shows that the aggregate wait time for the QP system with a burst and the 
aggregate wait time for the QP system with even distribution are not much different.  That 
said, it appears that the difference between the light and dark gray lines is who benefits most.  
The dark gray line shows over 200 people with a wait time of 0.  This includes all of the QP 
holders, who arrive at the appropriate moments in order not to wait, and the avgφ−1  
proportion of the first ride in the period that is filled with regular line people.  The more QP 
holders that arrive later in the period, the more regular line people that can ride earlier in the 
period.   

Consider Table 1, which shows the corresponding wait times every tenth person in 
line faces for each of the three cases in Figure 2.  Note that, unlike the way in which the 
graph data was sorted together, in the table the QP holders, shaded in gray, are listed at the 
beginning of each window.  This is because the table is listing people by their order in line.  
As our QP kiosk system operates, as described later, QuickPasses will only be issued for 
windows that are farther away than the current regular line wait time.  This means that 
everyone in line at the time someone obtains a QP from the kiosk will have already ridden 
by the time the issued QP window begins.  Thus, all QP holders arrived before the regular 
line riders for the designated QP window: the QP riders were there first, but they were 
allowed to leave and return.  Thus, in an ordinal list of the riders for a window, QP riders 
must go first.   

Analyzing the table, we can draw two conclusions that the previous graphs have 
suggested.  First, for every person in line, the wait time in line under a QuickPass system is 
less than or equal to the wait time without the QP.  Thus, we can state that a QP system, 
regardless of when the QP holders arrive within the window, is Pareto optimal to not having 
a QP system.  Second, comparing the wait times for the burst versus the even distribution of 
QP arrival, we see that there is a tradeoff.  While the aggregate wait times differ from each 
other little, who benefits most from the reduction of aggregate wait does vary.   

 
 

                                                 
5 This QuickPass model is in no way affiliated with Gap Inc. 
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Figure 2: Wait Times & Aggregate Wait for a Burst versus No Burst 

Thus, a burst primarily affects the distribution of QP benefits between the separate 
line members.  QuickPass holders are most benefited with an arrival rate dispersed at avgφ , 
though, as the graph shows, nearly all 900 riders experience some benefit in either case, and 
none are worse off than they would be if there was no QP system.   

Furthermore, since QP holders have the lowest possible wait time when they arrive 
evenly dispersed throughout the window, we propose placing a suggested return time on all 
QP tickets issued.  This suggested time will be within the QP window, and it is not intended 
as an enforceable return time.  Thus, it should not increase stress on the park attendee to 
return at a specific moment.  However, the QP holder should be advised that if he, and 
everyone else with a QP, returns at or near their suggested time, their already greatly reduced 
wait time will be even lower, or perhaps nearly zero.   
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6.3 Queue Simulation 6 
 
 We have developed a program that simulates queues for both the regular line and the 
Quick Pass (QP) line over time, taking into account additional QP holders that enter the 
line.  The program currently obtains initial parameters from the user, but in a real-life 
situation, some of these parameters would be coded in as constants, while others would be 
obtained from the environment.  The first type of parameter includes maxφ , ride capacity, 
length of window, and maximum allowable wait time for QP holders.  The latter type of 
parameter includes the current number of people in the regular line, the current number of 
people in the QP line, and then, later on, how many QP holders arrive before each ride 
departs. 
 This particular simulation looks at the time of 2 window lengths, for situations in 
which huge bursts of QP holders arrived at the end of one window and the beginning of the 
next, as mentioned above.7  The rest of the simulation lasts as long as there are still people in 
line.  We first look at the maximum number of QP holders that can get on the next ride (we 
arrive at this value by multiplying k*φ ) – if it is less than the total number of QP holders in 
line, then we will let in the maximum number of QP holders, and fill up the rest of the ride 
with folks from the regular line.  Otherwise, we will merely let in all the QP holders in line, 
and then fill up the rest with people from the regular line.  After each ride, the system 
determines (either manually or from the environment) how many QP holders have entered 
the line since the last ride. 
 We have included in the appendix a sample output for the program using the 
following parameters: 400 folks in the regular line; 50 people in the QP line; maxφ  is 2/3; 30 
people per ride; 3 minutes per ride; 45 minute window; and maximum wait of 15 minutes for 
QP holders.  As you can see in the appendix, varying amounts of QP holders have arrived at 
different points during the simulation.  These are merely arbitrary; as long as the total 
number of QP holders that arrive does not exceed the total number of QP’s issued, the 
simulation runs smoothly. 
 
 
 
 

                                                 
6 See Appendix A for Computer Code & Sample Output 
7 See discussion of bursts in Section 7.2. 
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7. The Model, Part II  
7.1 Derivation of λ  
 
 To improve the estimate of wait time for the regular line, λ , we propose the 
following procedure.  To start, let us consider how the day has been divided into windows 
for QuickPass riders.  In each window,  people will ride the ride:  from the 
QuickPass line and  from the regular line.  Let us simplify things for the moment and 
assume that the maximum number of QuickPasses in each window has been issued – which, 
in most cases, is a reasonable assumption (given that the rides for which we are issuing 
QuickPasses are in high demand).  This means that  and  will be the same for every 
window, with  equaling: 

totN QPN
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For now, we will set lττ =g  so that there is no potential overlap of QP holders 
from consecutive windows.  Since maxφ  must be less than 1, as we have previously 
established, we know that on every ride there will be a rider from the regular line.  Because 
of this, the last person in the regular line who will ride in a given window, the th person, 
will ride on the last ride of the window, and his wait time during that window will be the 
length of the window, 

regN

Wτ .   
If we view λ  in relation to the division of the day into windows, we can represent λ  

as the sum of three elements: (a) the partial window the current time is in, (b) subsequent full 
windows that λ  spans, and (c) a partial window at the end that λ  does not fully span.  λ , 
of course, is dependent on the total number of people in the regular line, , among other 
things.  We will now derive equations for each of the three parts of 

lineN
λ .   

By simply subtracting the current time from the time the current window ends, we 
obtain an exact value for (a).  The equation for this component of λ , however, does not 
look that simple: 

   )( opencur
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aλ  is derived from three data inputs: (i) the time of day, given by an internal clock in the 
kiosk and converted to minutes; (ii) time of beginning of first window, i.e. the time of park 
opening, converted to minutes; and (iii) the window length in minutes.  Inputs (ii) and (iii) 
are predetermined constants.  The equation for aλ  takes the amount of time since the park 
has opened, opencur ττ − , and divides it by Wτ  to yield the number of windows that have 
passed since the park has opened.  Taking the ceiling of this quotient tells us what the next 
window will be, i.e. if the quotient is 5.2, the next window will be the sixth.  Multiplying this 
integer by Wτ  tells us the time (expressed as minutes since the park’s opening) that the next 
window will begin, which is the same as when the current window ends.  Subtracting the 
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amount of time since the park has opened, we are left with aλ , which is the amount of time 
from the current time until the end of the current window.   





)

reg passed

reg

 We have established that  people from the regular line will ride in each window.  
If we know how many people from the regular line have already ridden the ride in this 
window, , we can easily calculate how many more will ride by the end of the current 

window.  Subtracting this value from , we are left with the number of people in the line 
who will ride starting in the next window.  This number is given by .  

We will, of course, need a way to track  and .  This can be accomplished by a 
system of people counters wired into the kiosk system, either with turnstiles that people 
must pass through both to get in line and to board the ride, or with similarly wired counters 
manually operated by ride attendants.  Presumably, a counting system is already in place in 
amusement parks using a QuickPass-like system, so the data input that our kiosk régime 
requires might not necessitate an increased expenditure to implement.   
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 Taking (N − , we can now calculate part (b) of )
passedregregline NN − λ , which is the 

amount of time dictated by the number of full windows the line spans.  bλ  is given by the 
following equation:  
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Dividing  by  and taking the floor of the quotient, we get the 

number of full windows that the remaining segment of the line spans.  Multiplying by 

)(
passedregregline NNN −− regN

Wτ  
gives us the amount of time it will take this many windows to pass.  We can do this because 
we know that the th person will be on the last ride of the window (his wait time will 
merely be 

regN

Wτ ).  Note that if the length of the line after aλ  is less than , the floor 
function will equal zero, and 

regN
0=bλ .  We can now add aλ  and bλ : 
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where ),,( curreglineba passed
NNf τλ =+ .   

 Now let us approach part (c) of λ , which is the amount of time it will take the last 
part of the regular line, , which includes only those people who will not ride in leftN ba+λ .  
This number of people is given by [ ] regreglineleft NNNNN

passed
mod)( −−= , which is the 

remainder of the quotient used in calculating bλ .  Although we know that  people will 
ride in 

regN

Wτ , we cannot be certain, however, how long it will take  (where ) 
people to ride because we cannot predict when QP holders will arrive.  We can, however, 
predict a maximum and minimum bound for the wait time, as well as project an average 
value.   

leftN regNleft <N

To calculate the range, recall the formula for  in a window that does not overlap 
(i.e. 

regN
1=υ ): 
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To analyze this formula in a more intuitive way, let’s add and subtract lτr
k  on the 

right-hand side as follows: 
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Now, collect terms in the following way: 
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This formula defines  in terms of the extreme case in which all QP holders for the 
window arrive in one burst.  For a duration of

regN

lτ , the rate at which regular line members can 
ride is discounted by )max1( φ− , and for the rest of the window, lττ −W , people from the 

regular line can ride at the full capacity rate 
r
k

N

.  Thus, we can view  as the sum of two 

components, one in which people from the regular line board the ride at the slowest possible 
rate, and another in which they ride at the fastest rate.  Let us, then, break  down into 
these two components, which we will label  and : 

regN

regN

slow fastN

lτ
φ
r

kN slow
)1( max−

= ; )( lττ −= Wfast r
kN .  (eq. 16, 17) 

Using , , and their corresponding rates, we can project a maximum and minimum 
value for 

slowN

c

fastN
λ , and thus for λ .   

For any given person in the regular line, his wait time during the window in which he 
boards the ride (the last partial window) is longest when all of the QP holders arrive at the 
beginning of the window.  Because the QP holders must ride within lτ , they take seats that 
could otherwise be filled with people from the regular line.  The regular line moves at a rate 
discounted by )1( maxφ−  until all of the QP holders ride, then it moves at the full, fast rate.  
That is,  goes before . slowN fastN

Expressing this fact, the following system yields maxλ : 
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  (eq. 18) 

if slowleft NN ≤ , p = 1 and q = 0 
if , p = 0 and q = 1 slowleft NN >

This means that if the number of people left in this window is less than or equal to the 
number of people that can be processed at the slow rate, the amount of time to add to ba+λ  
is the amount of time it takes to accommodate  people at the slow rate.  If , 
this amount of time is 

leftN slowNleftN =

lτ .  On the other hand, if , the people left in line after slowleft N>N
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lτ , , will ride at the rate corresponding to the full capacity of the ride. This 
expression simplifies to the terms in 

slowleft NN −

maxλ  that are multiplied by the dummy variable q.   





+ τq

left N

=minλ

≤

left N>

avgλ =

curτ N

=ψ

= αψ

 The system for the minimum bound for λ , minλ , is analogous: 
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if fastN , p = 1 and q = 0 
if , p = 0 and q = 1 fastN

 We also can project an average value for λ , avgλ .  This is the case in which QP 
holders return at their suggested return time, thus evenly spreading out the QP riders over 
the entire window.  The following equation captures this case: 

       
reg

left
Wba N

N
τλ ++     (eq. 20) 

Note that, despite the lengthy equations, minλ , avgλ , and maxλ  are all functions of just three 
variables , , and .  The rest of the terms are constants with predetermined 
values.   

line passedregN

 
 
7.2 The Ψ Factor  
 
 Heretofore, we have assumed that two people who have each been issued a 
QuickPass for different times of the day at different times are equally likely to use that 
QuickPass.  However, it is more likely the case that as the return time gets farther away from 
the current time and as the return time becomes later in the day, the QuickPass is less likely 
to be used.  Unfortunately, we do not have accurate data sets at this juncture with which we 
could analyze and determine exactly what this depreciation factor is.  We do believe that 
some sort of negative correlation exists between, on the one hand, the time of day( dayδ ) and 
the number of hours until the return time( ) and, on the other hand, the percentage of 
people holding QuickPasses that won’t show up for a given window.  We will call this the ψ 
factor, with constants α and β: 

reth

         1++ dayreth βδα     (eq. 21) 
The first part of the formula, without the 1, yields an estimated percentage value of 
QuickPasses that will not show up.  Thus, we add 1 to ψ in order to multiply ψ by the 
number of QuickPasses and generate the number of QuickPasses we should put out.  Here, 
we simply multiply the two variables by constants.  We are assuming that the variables are 
dependent on each other and ψ is veritably equally dependent on both. 
 However, it is possible that ψ is more dependent on one variable or the other.  The 
following formula proposes a ψ that it is heavily dependent on the time of day, with a new 
constant of γ: 

 
1++ dayehret

γδβ  
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Of course, there are countless other variations on this formula.  In order to truly understand 
the essence of ψ, one must become one with the data sets.  In doing so, it would become 
clearer as to how to arrive at a more accurate ψ.  The proper technique we would follow 
upon discovering this elusive data, which our amusement park has so conveniently kept 
from us, would be to fit a regression equation to the data, which would lead us to the secret 
of the ψ factor. 
 Now that we understand λ  and ψ, we can explore a system that simulates a real-life 
amusement park QuickPass system. 
 
 
7.3 QuickPass Kiosk System8 
7.3.1 Overview of Simulation 
 We have developed a simulation of the QuickPass Kiosk System (QPKS) that 
incorporates all the factors we have discussed up to this point.  This particular system will 
ask the user to input certain variables that the actual implementation of the system would be 
able to obtain from its environment (e.g., Current Time, Current Number of People in Line, 
etc.). 

The QPKS starts by calculating the number of QuickPasses (QP’s) that it should 
distribute in any given window: 





=

r
kN W

QP
τ

ψφ  

Here, we multiply the percent of QP’s per ride times the number of seats per ride in order to 
find out how many people with QP’s would be on each ride.  This is multiplied by the 
depreciation value, ψ, in order to account for QP holders not showing up during their 
allotted window due to it being either so late in the day or so many hours away (the 
derivation of ψ can be found in Section 8.2).  The length of the window divided by the 
duration of the ride will tell us how many rides there will be during the course of the 
window.  When multiplied together, we get the total number of QP’s we can dispense during 
the window. 

Next, the number of windows is calculated by simply subtracting the opening time 
from the closing time, and dividing by the length of the window.  An array is created to store 
how many QP’s have already been distributed for any given window.  Of course, all of these 
are initially set to zero.  The rest of the program is a large ‘while’ loop that will continue until 
the park closes (i.e., until the current time is greater than the closing time; thus, never 
allowing a QP to be issued after we close). 

At the start of each iteration, the system will obtain the current time, the current 
number of people in the regular line, and the number of people who have gotten on the ride 
during this window (these are variables that are entered manually in this particular 
simulation, but would be obtained automatically by the actual kiosks). 

The number of people from the regular line that will ride during this window is 
derived from the length of the window, the capacity of the ride, the length of the ride, and 
how many QP’s have been distributed for the current window: 

QP
W Nk
r

−
τ  

                                                 
8 See Appendix B for Computer Code & Sample Output 
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Once again, we are dividing the length of the window by the length of the ride to get the 
number of rides per window.  By multiplying by the capacity of the ride, we arrive at the 
total number of people that will ride during this window.  Finally we subtract the number of 
QP’s that have been given out for this window to obtain the number of people from the 
regular line that will ride during this window. 
 The QPKS evaluates the estimated wait time for the regular line, λ, as a summation 
of the wait time for the remainder of the window we are currently in, the subsequent 
windows that λ spans, and the partial window at the end that λ does not fully span.  [An in-
depth discussion of the derivation of λ can be found in Section 8.1.]  If λ is less than the 
lower bound wait time for doling out QP’s, then we will refuse to issue a QP for the time 
being. 

Otherwise, we arrive at a loop that will take us from the first window that’s at least λ 
minutes away to the last window before closing time. Within the loop, we first check to see 
whether we’ve already distributed the maximum number of QP’s for the ith window.  If we 
still have some left, the QPKS tells the user that there are indeed QP’s available for that 
window.  Additionally, it will tell the user how many QP’s are left.  At first consideration, we 
favored the idea of only allowing the system administrator of the QPKS to obtain this data; 
however, upon further reflection, we realized that it might be important to a user: if there are 
only 2 QP’s left for a given window, and I’m in a party of 4, then we would rather stay 
together and wait a little bit longer, than split up and have half of us go now and half go 
later.  This thoughtful consideration by the Amusement Park on behalf of the consumer 
lacks expensive cost, yet its benefit could be immense in terms of the pleasure and relaxation 
of the consumer. 
 After displaying all available windows, the system asks whether the user would like to 
obtain a QP at this moment; if the answer is affirmative, then it asks which window to 
obtain a QP for and properly alters the array of how many QP’s have been distributed 
already.  An extension of the QPKS that is not included here, due to the unfortunate 
constraints of the space time continuum, would be to issue an exact return time within the 
window that is a function of how many QP’s have been issued for that period of time.  It 
can be explained to the guest that if he was to arrive at that time, they would have minimal 
wait time. 
 And we return back to where we started (to the ‘while’ loop that goes until closing 
time). 
 
7.3.2 Discussion of Sample Data 
 Also in Appendix B are sample outputs for three different situations.  This will give 
the reader a very rough idea of what the interface would be like if this was an actual QPKS.  
Information that is entered manually but would normally be obtained from the environment 
is noted.  The QPKS gives the guest an idea of how long the wait would be if he/she waited 
in the regular line.  While the first QP window offered will always be further away than if the 
guest chose to stand in the regular line, the guest might rather desire to spend his/her time 
in a different way.9 
 The first set of sample output has the following parameters: the current time is 
9:35am; 400 people are currently in the regular line; and 40 people from the regular line have 
already ridden during this window.  The QPKS computes the wait time to be 49->59 

                                                 
9 Please see Section 7.1 for an In-Depth Discussion on the Revenue Benefits of the QP system 
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minutes, with an estimated wait time of 51 minutes.  There are 14 available windows, starting 
with 11:00-11:30am and ending with 8:45-9:15pm. 
 The second set of sample output has the following parameters: the current time is 
12:25pm; 800 people are currently in the regular line; and 160 people from the regular line 
have already ridden during this window.  The QPKS computes the wait time to be 76->86 
minutes, with an estimated wait time of 83 minutes.  There are 10 available windows, starting 
with 2:00-2:30pm and ending with 8:45-9:15pm. 

The third set of sample output has the following parameters: the current time is 
3:45pm; 2000 people are currently in the regular line; and 100 people from the regular line 
have already ridden during this window.  The QPKS computes the wait time to be 255->255 
minutes, with an estimated wait time of 255 minutes.  There are 2 available windows, starting 
with 8:00-8:30pm and ending with 8:45-9:15pm.  Note that the maximum and minimum wait 
times generated are the same.  This is because, as incorporated in the calculation for λ, every 

th person rides in regN Wτ .  The maximum and minimum values converge as  
approaches , and they equal each other at .  Thus, the number of people in the 
regular line in this example turns out to be the exact number that will finish a window, and 
the last person in line will ride at the end of the window.   

leftN

regN regN
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8. Extensions 
8.1 λ  Calculation 

 
Our calculation for λ relied on several assumptions.  Here, let us relax them and 

discuss how the procedure will shift.  First, consider the case when )(
passedregregline NNN −−  

is negative.  This means that λ  will be less than rest of current window.  In this case, ba+λ  
should be set equal to 0, and the procedure for calculating λ should skip to part (c).    

Another case that will alter our calculation of λ  is when there is potential overlap 
between windows, i.e. lττ <g

W

.  As our graphs above have shown, instead of every th 
rider passing through in 

regN
τ , every 2 th person rides in 2regN Wτ .  In case of a burst of QP 

riders where the windows meet, it takes until the end of the second window to even out, 
whereas with no overlap, the line length and window duration line up at the end of each 
window.  Thus, we will amend bλ  as follows: 
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Likewise, the calculation of cλ  will change slightly.  The method for determining the 
maximum, minimum, and average values is analogous to the method used above.  Since we 
have determined that the best case is when lττ =g , we will omit the rest of the full 
derivation.   

Similarly, one final case that would alter the projection of λ  is if we relax the 
assumption that the maximum number of QuickPasses from each period (given the set 
values for the constants) will be issued, although we do not expect this to be a regular 
occurrence.  This new calculation will require no new data inputs, for the kiosk program 
already records the number of QPs issued.  If we give  a subscript parameter of regN θ  such 
that each window θ  has a specific , we can compute regN λ , albeit with a much more 
complex computation.  A final version of the kiosk program would want to include this 
procedure to ensure optimal wait time measuring in all circumstances, even unlikely ones 
such as this.   
 
8.2 Integration of the QuickPass Kiosk System 
  
 The current QuickPass system involves kiosks that are ride-specific and are only 
available near that particular ride.  This system is inefficient in that someone on one side of 
the park could be interested in riding a ride on the other side of the park.  If he could tell at 
this moment that there is a long wait, then a QuickPass could be obtained, the guest could 
meander at will across the park, and show up to the ride during their allotted window, thus 
minimizing total wait.  He would not have to walk all the way across the park to do this, 
thereby saving him lots of wasted time and energy.   
 Our idea is to place kiosks throughout the park, with several located near the 
entrances.  The kiosks would be plugged into an integrated system that would be tapped into 
every ride and would provide real-time data on current wait times, etc.  A central database 
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would be maintained that would contain information on which guests (identified by their 
daily park entrance ticket) currently have QuickPasses out, so as to ensure that no one 
obtains multiple passes. 

One possible extension of this would be to allow guests (in particular, those who like 
a schedule to follow) to obtain multiple QuickPasses for different rides throughout the day.  
Possible features of this system would include the option to create a recommended itinerary 
by ordering guests’ rides into a logical sequence so that they wouldn’t have to zigzag all over 
the park.  The demand for this already exists, as evidenced by the scheduling program called 
RideMax™ for Disneyland®.10  The essence behind RideMax™ is that it allows you to 
create a detailed schedule for your day, given your arrival time, your departure time, and 
which rides you want to ride.  While RideMax™ relies on historical wait time data based on 
time of year, this amusement park could use our model in order to determine more accurate 
wait times based on the dependent factors and real-time data.  It is our recommendation that 
the amusement park integrate a system such as this into its QuickPass Kiosk System. 
 The integration will require some sort of computer network to connect all the kiosks 
together.  The obvious first choice would be to use the IEEE 802.3 standard.  However, if 
this implementation is too costly for the amusement park (this is dependent partially on what 
equipment is currently in use at the park), perhaps it might be more effective to use IEEE 
802.16, broadband wireless.  This will ensure high speed connections between the kiosks and 
the central database, thus allowing park guests using the kiosk to get their Quick Passes 
easily and quickly.  Additionally, it will circumvent the need to lay down miles of cable.  The 
park would have to install a single broadband wireless tower, as well as wireless devices in all 
of its kiosks.  A further advantage is future flexibility, for a wireless network facilitates the 
addition of kiosks down the road.  [As an aside, the amusement park could also offer 
wireless internet to its guests through this system.] 
 
8.3 Artificial Intelligence 
 
 No 21st Century computer system would be complete without the latest and hottest 
technology, artificial intelligence, or simply, A.I..  While the QuickPass Kiosk System won’t 
exactly be dodging bullets quite like Agent Smith from the hit movie, The Matrix, a unique 
extension to this system would be to add the capabilities of a fairly simple “rational agent.”  
One element of this is that the QPKS would determine error between its calculations and 
actual data.  For example, when it calculates the estimated wait time for the folks standing in 
the regular line, it could store that information and compare it to the actual wait time for 
those people.  Over time, the system would integrate its relative error into the equations.  Of 
course, one wouldn’t want to rely heavily on one day’s worth of data.  The data should be 
accumulated over a fixed period of time, and then the error would be integrated into the 
equations. 
 This field of A.I. is called learning.  As the rational agent perceives nuances in its 
environment, it is able to improve itself over time.  Of course, if the QPKS were to have a 
plethora of data a priori, then the relative learning from the environment would be much less 
(although it could still have impact on the calculations). 

                                                 
10 RideMax Software 
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9. Conclusions: Strengths and Weaknesses 
 
 The principal strength of our model lies in the idea that the maximum allowable 
time, as set by the amusement park, that a QP holder will wait in line will never be exceeded.  
Additionally, no QP’s will be given out for a return time sooner than a previous distributed 
QP.  Thus, we have satisfied the problem given to us.  However, we have taken this further.  
We have included the ability to have multiple QP’s.  This will allow the guest to plan their 
day in advance, or perhaps even be issued a rough itinerary for the day! 
 In the beginning of this paper we quoted Julie’s complaints about Disneyland’s® 
FastPass system.  We then briefly discussed how we would go about dealing with these 
complaints, and incorporated them into our model throughout the paper.  A concise list of 
how we turned those complaints around follows: more accurate estimates for wait times, 
QuickPass holders will never fill a ride (thus, the regular line is always moving), QuickPass 
users will have the ability to choose from all available windows, all men ARE created equal, 
and the ability to ride back-to-back on a single ride is allowed, in addition to those strengths 
listed in the paragraph above. 
 The general conclusions derived from our model are independent of assumed values 
in the examples we used.  The park should be able to enter in whatever it desires.  To follow 
this line of thought, special events won’t affect our system.  The QP system is in place to 
redistribute peaks amongst a longer period during the day.  Special events will most likely 
just increase the level of those daily peaks.  Also, if a ride breaks down, it is likely that the 
integrity of the QP system will be maintained.  We take into account the maximum wait time 
for QP holders; only if a large burst of them arrive at the same time will we need a buffer.  
Otherwise, we could have some time to fix the broken ride. 

Finally, we believe that the cost of implementing this system is worth it, considering 
the high returns on people’s enjoyment & relaxation, not to mention increased revenue! 
 
 There are some weaknesses in our model.  As Obi-Wan Kenobi says, “The Force 
can have a strong influence on a weak mind.”11  However, we will expound on our 
weaknesses; upon further consideration, it would be possible to take care of these, pending 
additional time.  The model presented in this paper does not model flow of people into the 
park or into a given ride.  Therefore, it won’t project wait times for a certain point in the day.  
It merely takes in given parameters and outputs estimated wait times.  In other words, the 
model works at the margin.  If the extension regarding Artificial Intelligence was put into 
action, then this weakness could be taken care of easily.12 
 We also don’t take into account that the length of the line is going to affect the 
decision of whether or not to take a QP.  If there is a long line at the kiosk, it will probably 
also affect the person’s decision.  This brings up the question of whether there is an optimal 
number of QP kiosks.  We suspect there is, but we leave it as an exercise for the reader. 
  
 In general, using accurate data will yield good results.  This is especially true when 
dealing with the A.I. extension of our model. 
 
 We hope you enjoyed your ride, please mind the gap as you exit to the right… 

                                                 
11 Star Wars, 1977. 
12 Please refer to Section 9.3. 
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10. Non-Technical Summary 
 

 

QuickPass, Inc. 

 

To: Amusement Park Executives 

From: QuickPass, Inc. 

CC: MCM Judges 

Date: May 31, 2004 

Re: The QuickPass System™ 

Greetings and Salutations!  We have recently concluded an exhaustive mathematical study 
of various QuickPass implementations per your request that we received approximately 
96 hours ago.  We have theorized and philosophized about the in’s and the out’s, the 
strengths and the weaknesses, and the good, the bad, and the ugly of these systems.  We 
began our approach by analyzing the problem as stated in the 2004 COMAP 
Mathematical Contest in Modeling. 

Immediately, we can ensure that under our system, people holding QuickPasses will never 
wait in line more than the maximum allowable wait time, which you can select [alternately, 
with more time and additional data specific to your park, our consultants would be happy 
to recommend this parameter for you].  With our system, no one will be able to get a 
QuickPass for a time earlier than one already handed out.  A person standing in the 
regular line will always ride before a person who obtains a QuickPass after the first person 
gets in line. 

During the course of our investigation, we discovered a few comments and complaints 
from a recent guest at an amusement park that will remain nameless, in order to protect 
the guilty (the amusement park in question employs something similar to our QuickPass 
system, yet unfortunately inferior).  To summarize her comments: 

• Estimated time waiting in the regular line was frequently off. 

• The regular line often took longer than expected, due to a sudden burst of 
“QuickPass” holders. 

• The “QuickPass” system allowed her to ride a ride twice in a row. 

Rest assured, we have addressed the above comments, as well as many others (see 
attachment).  We have created a system in which more accurate estimates for wait times 
are available.  These are updated in real-time, depending on various considerations, such 
as the current number of people standing in the regular line.  Also, QuickPass holders will 
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never fill a ride, thus guaranteeing that the regular line will always be moving.  We have set 
a maximum number of QuickPass holders that can get on any given ride [once again, this 
number can be set by you, or our consultants would be happy to recommend one for 
you, pending further time and more information about your particular park].  While the 
current systems in use today only allow the guest to have one QuickPass at a time, we 
have found that many of our visitors would rather have the ability to have multiple 
QuickPasses.  Our system incorporates this ability, should you desire it.  Also, several 
people have taken advantage of a hole in which one can ride back-to-back on a single 
ride.  This can occur, since when a person obtains a QuickPass for a given ride, the 
current wait time in the regular line is always less than the time until the window of time 
for which the QuickPass has been issued.  We have maintained this feature of the 
QuickPass system, although it, too, could be removed at your particular park at little 
added inconvenience.   

Finally, we would like to state that we agree with the Declaration of Independence: All 
Men are Created Equal.  A few visitors have complained that their line moves slower 
while the QuickPass holders enter their respective line and ride very quickly.  However, 
we have made certain that overall, the not one person is worse off than they would be if 
the system didn’t exist.  Furthermore, the majority of people will benefit from this system.  
The regular lines will be shorter, and the people choosing to obtain a QuickPass can use 
their time in ways other than waiting in line.  Some examples of what they might do are 
ride another ride, buy food or drink, purchase merchandise, or play one of the many 
games that are popular at amusement parks.  Clearly, one does not need an MBA to see 
that this QuickPass system can be financially beneficial to your amusement park.  Using 
actual data acquired from an amusement park along with our own sample data, we 
calculated that using our QuickPass system, we could generate approximately $192 
million a year in added revenue for this particular park, exclusively from the time saved 
waiting in line. 

Thus, not only will your guests be happier and more relaxed as they visit your park, but 
you will also see your profits surge because of the QuickPass system!  This should more 
than cover the cost for actually implementing our system. 

We hope that you will contact us as soon as possible to discuss further the feasibility of 
using our QuickPass system in your amusement park.  We look forward to meeting with 
you. 

Sincerely, 

The Consultants 
QuickPass, Inc. 
 
Attachment: Mathematical Investigation of the QuickPass System 
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11. Appendices 
11.1 Appendix A 

Queuing: Computer Simulation 
(Written in C++, using the g++ Compiler) 

 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
int main(){ 
 int n; //people in regular line 
 int nQP; //people in QP line 
 float phi; //max% people to let on from QP line 
 int k; //number of people per ride 
 int r; //time per ride 
 int tWin; //window size 
 int tWait; //maximum wait time for QP people 
 
 cout << "Welcome to the Queuing System. Please enter the following” 

<< “ initial data:\n"; 
 /*gets initial data from user*/ 
 cout << "Number of people in the regular line: "; 
 cin >> n; 
 
 cout << "Number of people in the Quick Pass line: "; 
 cin >> nQP; 
 
 cout << "Maximum Percent of people to let on from QP line: "; 
 cin >> phi; 
 
 cout << "Number of people per ride: "; 
 cin >> k; 
 
 cout << "Time per ride: "; 
 cin >> r; 
 
 cout << "Size of window: "; 
 cin >> tWin; 
 
 cout << "Maximum wait time for QP people: "; 
 cin >> tWait; 
 
 int tWin2 = 2*tWin; 
 int thisRide; 
 int newQP; 
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 int currTime = 0; 
 int nQPRide; 
 
 cout << "At time " << currTime << ", " << nQP << " people in QP line..." << n  
  << " people in regular line.\n"; 
 
 int i=0; 
 while( (tWin2 > 0) && ( (n>0) || (nQP>0) ) ){ 
   
  thisRide = k; 
  nQPRide = int(ceilf(phi*k)); 
 
  if(nQPRide < nQP){ 
   nQP = nQP - nQPRide; 
   if(n > (k-nQPRide)){ 
    n = n - ( k - nQPRide ); 
   }else{ 
    n=0; 
   } 
  }else{ 
   if(n > (k-nQP)){ 
    n = n - (k-nQP); 
   }else{ 
    n=0; 
   } 
   nQP = 0; 
  } 
  currTime += r; 
 
  cout << "At time " << currTime << ", " << nQP  

<< " people in QP line..." << n << " people in regular line.\n"; 
 
  cout << "How many QP folks have joined in at time "  

<< currTime << "? "; 
  cin >> newQP; 
  nQP += newQP; 
 
 
  tWin2 = tWin2 - r; 
  i++; 
 } 
 cout << “<end of simulation>\n”; 
 return 0; 
} 
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SAMPLE OUTPUT for program [note: italics signifies user input] 
Sample Data: 400 folks in the regular line; 50 people in the QP line; maxφ  is 2/3; 
 30 people per ride; 3 minutes per ride; 45 minute window;  

maximum wait of 15 minutes for QP holders 
Welcome to the Queuing System. Please enter the following initial data: 
Number of people in the regular line: 400 
Number of people in the Quick Pass line: 50 
Maximum Percent of people to let on from QP line: .6666666666666666 
Number of people per ride: 30 
Time per ride: 3 
Size of window: 45 
Maximum wait time for QP people: 15 
At time 0, 50 people in QP line...400 people in regular line. 
At time 3, 30 people in QP line...390 people in regular line. 
How many QP folks have joined in at time 3? 5 
At time 6, 15 people in QP line...380 people in regular line. 
How many QP folks have joined in at time 6? 3 
At time 9, 0 people in QP line...368 people in regular line. 
How many QP folks have joined in at time 9? 9 
At time 12, 0 people in QP line...347 people in regular line. 
How many QP folks have joined in at time 12? 0 
At time 15, 0 people in QP line...317 people in regular line. 
How many QP folks have joined in at time 15? 4 
At time 18, 0 people in QP line...291 people in regular line. 
How many QP folks have joined in at time 18? 0 
At time 21, 0 people in QP line...261 people in regular line. 
How many QP folks have joined in at time 21? 0 
At time 24, 0 people in QP line...231 people in regular line. 
How many QP folks have joined in at time 24? 9 
At time 27, 0 people in QP line...210 people in regular line. 
How many QP folks have joined in at time 27? 5 
At time 30, 0 people in QP line...185 people in regular line. 
How many QP folks have joined in at time 30? 15 
At time 33, 0 people in QP line...170 people in regular line. 
How many QP folks have joined in at time 33? 0 
At time 36, 0 people in QP line...140 people in regular line. 
How many QP folks have joined in at time 36? 0 
At time 39, 0 people in QP line...110 people in regular line. 
How many QP folks have joined in at time 39? 0 
At time 42, 0 people in QP line...80 people in regular line. 
How many QP folks have joined in at time 42? 0 
At time 45, 0 people in QP line...50 people in regular line. 
How many QP folks have joined in at time 45? 0 
At time 48, 0 people in QP line...20 people in regular line. 
How many QP folks have joined in at time 48? 0 
At time 51, 0 people in QP line...0 people in regular line. 
How many QP folks have joined in at time 51? 0 
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<end of simulation> 
 
11.2 Appendix B 
 

Quick Pass Kiosk System: Computer Simulation 
(Written in C++, using the g++ Compiler) 

 
#include <iostream> 
#include <math.h>  
using namespace std; 
 
int minToTime(int tmp);//converts minutes to time (eg, 90 -> 1:30, or 130) 
int timeToMin(int tmp);//converts time to minutes (eg, 1:30, or 130 -> 90) 
 
int main(){ 
 /*variables, and sample values*/ 
 int lambda,lambdaZ,lambdaAvg,lambdaLow,lambdaHigh; //current wait times 

//for regular line 
 int minLambda=30; //minimum wait time to issue QP 
 int tCurr=800; //current time 
 int tOpen=800; //opening time 
 int tClose=2200; //closing time 
 float phi=0.22222222; //% QP's per window 
 float phiMax=0.66666666; //max % QP's per window 
 int k=30; //number of people per ride 
 int r=3; //time duration of ride 
 int tWait=15; //maximum allowable wait time for QP line 
 int nQP; //number of QP's per window 
 int tWin=45; //duration of window 
 int gap=15; //gap time 
 float psi=1; //depreciation factor 
 
 int pplInLine; //current number of people in the regular line 
 int pplOnRide; //number of people that have gotten on the ride from the regular 
    // line during this window 
 int pplToRide; //number of people from regular line  

//that will ride during this window 
 int nReg; //number of people per window 
 
 cout << "Loading Quick Pass Kiosk...\n" 

<< "\n\nWelcome to the Quick Pass Kiosk!  Please enter some ”  
<< information for us.\n" 

  << "\t[All durations should be in minutes (30,56,80,100,...),\n" 
  << "\tall times should be in military form (eg,8:34am -> 834; ”  

<< “4:25pm -> 1625)]\n"; 
/* cout << "Current/Opening time: "; 
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 cin >> tOpen; 
 tCurr = tOpen; 
 
 cout << "Closing time: "; 
 cin >> tClose; 
 
 cout << "Percent of QP's to issue per window: "; 
 cin >> phi; 
 
 cout << "Maximum percent of QP's: "; 
 cin >> maxPhi; 
 
 cout << "Total Duration of window (including gap): "; 
 cin >> tWin; 
 
 cout << "Length of gap: "; 
 cin >> gap; 
 
 cout << "Maximum Allowable Wait Time for QP line: "; 
 cin >> tWait; 
 
 cout << "Number of People per Ride: "; 
 cin >> k; 
 
 cout << "Time Duration of Ride: "; 
 cin >> r; 
 
 cout << "Minimum Wait Time before Issuing QP's: "; 
 cin >> minLamda; 
*/ 
 
 nQP = int(ceilf(float(psi * phi * k * tWin) / r)); 
 
 int n = int(floorf(float(timeToMin(tClose-tOpen))/tWin)); 
 int windows[n]; 
 for(int j=0;j<n;j++){ 
  windows[j]=0; 
 } 
 
 int tStart,tEnd; 
 bool text; 
 
 while(tCurr < tClose){ 
  //system("clear"); 
  cout << "\n\nWelcome to the Quick Pass Kiosk!\n"; 
  cout << "...info to be obtained via the lines/computer...\n"; 
  cout << "\tCurrent Time: "; 
  cin >> tCurr; 
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  cout << "\tCurrent Number of People in the Regular Line: "; 
  cin >> pplInLine; 
  cout << "\tNumber of People who Have Gotten on the Ride\n\tFrom the”  

 << " Regular Line during this window: "; 
  cin >> pplOnRide; 
 
  cout << "............................\n"; 
 
  //nReg = (tWin * k)/r - windows[timeToMin(tCurr - tOpen)/tWin]; 
  nReg = (tWin * k)/r - 100; 
 

lambdaZ = int( (tWin * ceilf(float(timeToMin(tCurr-tOpen))/tWin)  
- timeToMin(tCurr-tOpen)) 

    + float(((pplInLine - nReg + pplOnRide)/nReg)*tWin) ); 
 
  pplToRide = (pplInLine - nReg + pplOnRide) % nReg; 
  lambdaAvg = lambdaZ + (pplToRide * tWin)/nReg; 
 
  if( pplToRide <= tWait * ( ((1-phiMax)*k) / r )){ 
   lambdaHigh = lambdaZ  

+ int(( (r * pplToRide) / (k * (1-phiMax)) )); 
  }else{ 
   lambdaHigh = lambdaZ  

+ int((phiMax * tWait) + ( (r * pplToRide) / k)); 
  } 
 
  if( pplToRide <= ( float(tWin - tWait) *k)/r){ 
   lambdaLow = lambdaZ + int( float(pplToRide * r) / k); 
  }else{ 
   lambdaLow = lambdaZ + tWin - tWait  
     + int(float( (r*pplToRide)  

- (k * (tWin-tWait) ))/(k * (1-phiMax))); 
  } 
 
  lambda = lambdaAvg; 
 
  cout << "Current wait time for this ride: " << lambdaLow << " to "  

<< lambdaHigh << " minutes.\nEstimated wait time: "  
<< lambdaAvg << " minutes.\n"; 

 
  if(lambda < minLambda){ 
   cout << "We are not currently issuing Quick Passes due to the” 
    << " minimal wait time for the regular line.\n"; 
   continue; 
  } 
 
  text=true; 
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  for( int i=int(ceilf(float(timeToMin(tCurr - tOpen) + lambda)/tWin));  
i < n ; i++ ){  //where n=(tClose-tOpen)/tWin 

   if(windows[i] >= nQP){continue;} 
 
   tStart = minToTime(timeToMin(tOpen) + (i*tWin)); 
   tEnd = minToTime(timeToMin(tStart) + tWin - gap); 
 
   if(text){ 
    cout << "We are currently issuing Quick Passes for the” 

<< “ time periods from..\n"; 
    text=false; 
   } 
   cout << '\t' << tStart << " to " << tEnd  
    << "...[" << nQP-windows[i] << " QP's left]\n"; 
  } 
  char yn; 
  cout << "Would you like to obtain a quick pass? (y/n): "; 
  cin >> yn; 
  if(yn == 'y'){ 
   int QPstart; 
   cout << "Enter the start time of the time period during which " 
    << "you wish to obtain your quick pass: "; 
   cin >> QPstart; 
   windows[int(ceilf(float(timeToMin(QPstart-tOpen))/tWin))]++; 
  }else if(yn == 'n'){ 
   cout << "Thanks for using our system!\n\n"; 
  }else{cerr << "You did not enter y or n! bad boY!\n";} 
 
 } 
 
 return 0; 
} 
 
 
int minToTime(int tmp){//converts minutes to time (eg, 90 -> 1:30, or 130) 
 return ((tmp/60)*100) + (tmp%60); 
} 
 
int timeToMin(int tmp){//converts time to minutes (eg, 1:30, or 130 -> 90) 
 int hrs = tmp/100; 
 return (hrs*60) + (tmp-(hrs*100)); 
} 
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SAMPLE OUTPUT for program [note: italics signifies user input] 
Sample Data 1: 9:35am; 400 people currently in the regular line;  

40 people from the regular line have already ridden during this window 
 

$ ./QPkiosk 
Loading Quick Pass Kiosk... 
                                                                                 
                                                                                 
Welcome to the Quick Pass Kiosk!  Please enter some information for us. 
        [All durations should be in minutes (30,56,80,100,...), 
        all times should be in military form (eg,8:34am -> 834; 4:25pm -> 1625)]                                                      
                                                                                 
Welcome to the Quick Pass Kiosk! 
...info to be obtained via the lines/computer... 
        Current Time: 935 
        Current Number of People in the Regular Line: 400 
        Number of People who Have Gotten on the Ride 
           From the Regular Line during this window: 40 
............................ 
Current wait time for this ride: 49 to 59 minutes. 
Estimated wait time: 51 minutes. 
We are currently issuing Quick Passes for the time periods from.. 
        1100 to 1130...[100 QP's left] 
        1145 to 1215...[100 QP's left] 
        1230 to 1300...[100 QP's left] 
        1315 to 1345...[100 QP's left] 
        1400 to 1430...[100 QP's left] 
        1445 to 1515...[100 QP's left] 
        1530 to 1600...[100 QP's left] 
        1615 to 1645...[100 QP's left] 
        1700 to 1730...[100 QP's left] 
        1745 to 1815...[100 QP's left] 
        1830 to 1900...[100 QP's left] 
        1915 to 1945...[100 QP's left] 
        2000 to 2030...[100 QP's left] 
        2045 to 2115...[100 QP's left] 
Would you like to obtain a quick pass? (y/n):  y 
Enter the start time of the time period during which you wish to obtain your quick pass: 
1100 
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SAMPLE OUTPUT for program [note: italics signifies user input] 
Sample Data 2: 12:25pm; 800 people currently in the regular line;  

160 people from the regular line have already ridden during this window 
 

Welcome to the Quick Pass Kiosk! 
...info to be obtained via the lines/computer... 
        Current Time: 1225 
        Current Number of People in the Regular Line: 800 
        Number of People who Have Gotten on the Ride 
           From the Regular Line during this window: 160 
............................ 
Current wait time for this ride: 76 to 86 minutes. 
Estimated wait time: 83 minutes. 
We are currently issuing Quick Passes for the time periods from.. 
        1400 to 1430...[100 QP's left] 
        1445 to 1515...[100 QP's left] 
        1530 to 1600...[100 QP's left] 
        1615 to 1645...[100 QP's left] 
        1700 to 1730...[100 QP's left] 
        1745 to 1815...[100 QP's left] 
        1830 to 1900...[100 QP's left] 
        1915 to 1945...[100 QP's left] 
        2000 to 2030...[100 QP's left] 
        2045 to 2115...[100 QP's left] 
Would you like to obtain a quick pass? (y/n): y 
Enter the start time of the time period during which you wish to obtain your quick pass: 
1445 
------------------------------------------------------------------------------------------------------------------- 
SAMPLE OUTPUT for program [note: italics signifies user input] 
Sample Data 3: 3:45pm; 2000 people currently in the regular line;  

100 people from the regular line have already ridden during this window 
Welcome to the Quick Pass Kiosk! 
...info to be obtained via the lines/computer... 
        Current Time: 1545 
        Current Number of People in the Regular Line: 2000 
        Number of People who Have Gotten on the Ride 
           From the Regular Line during this window: 100 
............................ 
Current wait time for this ride: 255 to 255 minutes. 
Estimated wait time: 255 minutes. 
We are currently issuing Quick Passes for the time periods from.. 
        2000 to 2030...[100 QP's left] 
        2045 to 2115...[100 QP's left] 
Would you like to obtain a quick pass? (y/n): y 
Enter the start time of the time period during which you wish to obtain your quick pass: 
2045 
 

 



Page 47 of 47  Control Number 432 

 

12. Works Cited 
 
American Beauty.  Dir. Sam Mendes.  Kevin Spacey, Annette Bening, Thora Birch, Scott  

Bakula.13  DVD.  DreamWorks.  1999. 
“FastPass.”  Feb 6, 2004.  http://allearsnet.com/tp/fastpass.htm. AllEarsNet. 
Kirsner, Scott.  “Hack the Magic.”  Feb 6, 2004.   

http://www.wired.com/wired/archive/6.03/disney_pr.html.  Wired Magazine. 
Matrix, The.  Dirs: Andy & Larry Wachowski.  Keanu Reeves, Laurence Fishburne,  

Carrie-Ann Moss.  DVD.  Warner Bros.  1999. 
RideMax Software.  “Disneyland: Spend Less Time in Line.”  Feb 6, 2004.   

http://ridemax.com/.   
Star Wars.  Dir: George Lucas.  Mark Hamill, Harrison Ford, Carrie Fisher.  DVD.  1977. 
 
 
 

                                                 
13 You know, the guy from Quantum Leap! 


